
CS 2110
Software Design Principles I

Recap from last time

We were talking about the class hierarchy and
inheritance of methods

Basic idea was to have a parent class that
implements some very general functionality and
then a child class that specializes it.

A parent class can also standardize an “interface”
shared by child classes. For example: classes
that support the same interface as an Array

X[i] = 17 + Y[j,k] / X[i]; // Is X really an array?

Array vs ArrayList vs HashMap
(latter two from java.util)

Array
Storage is allocated
when array created;
cannot change
Extremely fast lookups

ArrayList (in java.util)
An “extensible” array
Can append or insert
elements, access i’th
element, reset to 0
length
Lookup is slower than
an array

HashMap (in java.util)
Save data indexed by
keys
Can look up data by its
key
Can get an iteration of
the keys or values
Storage allocated as
needed but works best
if you can anticipate
need and tell it at
creation time.

HashMap Example

Create a HashMap of numbers, using the names
of the numbers as keys:

Map<String, Integer> numbers
= new HashMap<String, Integer>();

numbers.put("one", new Integer(1));
numbers["two"] = new Integer(2));
numbers.put("three", new Integer(3));

To retrieve a number:
Integer n = numbers.get("two"); // Explicit method call
Integer n = numbers["two"]; // Array notation

Returns null if the HashMap doesn’t contain key
Can use numbers.containsKey(key) to check this

Generics and Autoboxing

Is a number like 71 an Integer (an object) or a base
type (an "int")?
How do I create an array with an object, not a base
type, in the entries?

Java automatically “autoboxes” and also lets you use
types as a kind of parameter

Map<String, Integer> numbers = new HashMap<String, Integer>();
numbers.put("one", 1); // Autobox converts 1 to new Integer(1);
int s = numbers.get("one");

What do these tell us?

There is a great deal of power in “abstraction”
Here we’re seeing examples in which the abstract
type is an array, but the values and even the
index can be arbitrary objects!

In Java we often also need special-purpose
objects that add functionality, properties etc

For example, to make an array extensible, or to
ensure that lookup will use a very fast method
even if the index type isn’t an integer

Our challenge?

We need to look at a computing problem, such
as building software for cyclists, and learn to

See the most general abstractions, where they
arise. For example “gosh, these are graphs”
Build powerful, general purpose solutions, such
as a graph class supporting graph operations
But then also see how to map that general
abstraction back to the real world

For example, creating bike routes that have GPS
locations and times and other bike-specific properties

Mapping goes two ways

You look at a problem and say “I see a more
basic, general idea here”

These bike routes look like graphs to me
So I’ll build a graph class, and then I’ll specialize
it to support graphs of bike data

But sometimes you have an existing powerful
class and think the opposite way

I already have a graph package. I’ll use it to
implement bike routes

So how do people do this?

One of the hardest questions in computing
centers on finding the right abstractions

We want them to be powerful, yet efficient

We want ways to specialize them that seem as
natural as possible

A journey of a thosand miles…

… starts with a single step

Most developers develop code partly by
experimentation

Don’t be afraid to experiment by
writing little code fragments and
seeing if they compile and what
they do.

But don’t write random code hoping
that it might work by some miracle.

Mistakes will happen!

We call them bugs…
To debug code, we need to think hard….

Do not just make random changes, hoping something
will work. This never works.
Think about what could cause the observed behavior
Isolate the bug. Focus on the first thing that goes wrong.

An IDE helps by providing a Debugging Mode
Can set breakpoints, step through the program while
watching chosen variables
When program pauses at breakpoint, or dies, can look at
values of variables it was using

So let’s look at how all this works

Garmin GPS unit tracks your bike ride

… displays match one graph (of the
ride) with another graph (the map)

… comparisons also match two
graphs

Which parts of my ride gained time verus last
time? Which lost time?

Actual data is an XML document
containing a list of “track points”

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<TrainingCenterDatabase xmlns="http://www.garmin.com/xmlschemas/TrainingCenterDatabase/v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.garmin.com/xmlschemas/TrainingCenterDatabase/v2 http://www.garmin.com/xmlschemas/TrainingCenterDatabasev2.xsd">

<Activities>
<Activity Sport="Biking">

<Id>2009-08-22T13:17:02Z</Id>
<Lap StartTime="2009-08-22T13:17:02Z">

<TotalTimeSeconds>4625.0800000</TotalTimeSeconds>
<DistanceMeters>30319.2753906</DistanceMeters>
<MaximumSpeed>17.7600002</MaximumSpeed>
<Calories>1451</Calories>
<Intensity>Active</Intensity>
<Cadence>0</Cadence>
<TriggerMethod>Manual</TriggerMethod>
<Track>

<Trackpoint>
<Time>2009-08-22T13:17:03Z</Time>
<Position>

<LatitudeDegrees>42.5619387</LatitudeDegrees>
<LongitudeDegrees>-76.6450787</LongitudeDegrees>

</Position>
<AltitudeMeters>229.4117432</AltitudeMeters>
<DistanceMeters>9.2514458</DistanceMeters>
<SensorState>Absent</SensorState>

</Trackpoint>
<Trackpoint>

<Time>2009-08-22T13:17:06Z</Time>
<Position>

<LatitudeDegrees>42.5618390</LatitudeDegrees>
<LongitudeDegrees>-76.6449268</LongitudeDegrees>

</Position>
<AltitudeMeters>227.4891357</AltitudeMeters>
<DistanceMeters>26.0653191</DistanceMeters>
<SensorState>Absent</SensorState>

</Trackpoint>
…..

</Track>
…

(Time=2009-08-22T13:17:03Z,Latitude=42.5619387, Longitude=- 76.6450787,Altitude=229.4117432)

(Time=2009-08-22T13:17:06Z,Latitude=42.5618390, Longitude=-76.6449268,Altitude=227.4891357)

But the data didn’t “start” as a graph

Applications like this often need to get their data
from some other format

For example, the Garmin bike device actually
creates a file in which it records the GPS data

The analysis program runs separately on my PC

Each ride is in a separate file

Sort of like a set of documents

I want to find the ones that “describe” the same
route – the same list of roads in the same
order, turns at the same place, etc

But the GPS unit won’t have collected
snapshots at identical spots

So suppose we want to
compare two “rides”

We’ve been thinking of each ride as a graph
If we also consider the GPS data the ride is a
curve in 3-D “space” (nodes are GPS data,
edges link successive points)
If two rides were on the same route, then
these curves should match closely,
provided we ignore the timestamp

After all, my rides weren’t at identical speeds,
which is my reason for wanting to compare them

Which rides were similar?

Which rides were similar?

Could match the curves “edge by edge” and
compute area between them….

Similar rides should
have small area difference
Different rides won’t match at all….

(Time=2009-08-22T13:17:03Z,Latitude=42.5619387, Longitude=- 76.6450787,Altitude=229.4117432)

(Time=2009-08-22T13:17:06Z,Latitude=42.5618390, Longitude=-76.6449268,Altitude=227.4891357)

(Time=2009-08-22T13:17:09Z,Latitude=42.5619781, Longitude=- 76.6450671,Altitude=199.4117432)

(Time=2009-08-22T13:17:13Z,Latitude=42.5619513, Longitude=-76.6440188,Altitude=118.4891357)

(Time=2009-08-22T13:17:03Z,Latitude=42.5619387, Longitude=- 76.6450787,Altitude=229.4117432)

(Time=2009-08-22T13:17:06Z,Latitude=42.5618390, Longitude=-76.6449268,Altitude=227.4891357)

(Time=2009-08-22T13:17:09Z,Latitude=42.5619781, Longitude=- 76.6450671,Altitude=199.4117432)

(Time=2009-08-22T13:17:13Z,Latitude=42.5619513, Longitude=-76.6440188,Altitude=118.4891357)

What makes it tricky?

Lance and Pantani didn’t follow the identical
route (they were on the same road, but
obviously didn’t exactly follow each other)
They may have been separated in time here
and there, even if at the end of the day they
were side by side on the climb
Sometimes Lance was faster, sometimes
Pantani was faster

The idea of abstraction

Our goal is to learn to think very abstractly
A “ride” that followed some “route”
The ride may differ (faster, slower, paused to wait
for a car to pass) and yet the “route” is essentially
the same
Yet even the route won’t be identical (depends on
how you define identical…)

Software Engineering

The art by which we start with a problem
statement and gradually evolve a solution

There are whole books on this topic and most
companies try to use a fairly uniform approach
that all employees are expected to follow

The IDE can help by standardizing the steps

The software design cycle

Some ways of turning a problem statement
into a program that we can debug and run

Top-Down, Bottom-Up Design
Software Process (briefly)

Modularity
Information Hiding, Encapsulation
Principles of Least Astonishment and “DRY”
Refactoring

Top-Down Design

Garmin GPS software

Refine the design at each step
Decomposition / “Divide and Conquer”

User
Interface

Show
Ridec

Export to
Google

Find
Similar Compare

Rides List One Ride

Track Point
List

Track Point
Object

Route

Not a perfect, pretty picture

Boxes at lower levels are “more concrete” and
contain things like GPS records, actual strings
Boxes at higher levels are more abstract and
closer to dealing with the user
In between are “worker bees” that do things
like file storage and waking up Google Earth
But don’t take the hierarchy too seriously

Most things don’t fit perfectly into trees

Bottom-Up Design

Just the opposite: start with parts

Composition
Build-It-Yourself (e.g. IKEA furniture)

User
Interface

Show
Ridec

Export to
Google

Find
Similar Compare

Rides List One Ride

Track Point
List

Track Point
Object

Route

Top-Down vs. Bottom-Up

Is one of these ways better? Not really!
It’s sometimes good to alternate
By coming to a problem from multiple angles you might
notice something you had previously overlooked
Not the only ways to go about it

With Top-Down it’s harder to test early because
parts needed may not have been designed yet
With Bottom-Up, you may end up needing
things different from how you built them

Software Process

For simple programs, a simple process…

But to use this process, you need to be sure that the
requirements are fixed and well understood!

Many software problems are not like that
Often customer refines the requirements when you try
to deliver the initial solution!

“Waterfall”

Incremental & Iterative

Deliver versions of the system in several small cycles

Recognizes that for some settings, software
development is like gardening
You plant seeds… see what does well… then replace
the plants that did poorly

Modularity

Module: component of a system with a
well-defined interface. Examples:

Tires in a car (standard size, many vendors)
Cable adaptor for TV (standard input/output)
External storage for computer
...

Often includes more than one class
Modules “hide information” behind their
interfaces

A module isn’t just an object

We’re using the term to capture what could be
one object, but will often be a larger
component constructed using many objects

In fact Java has a module subsystem for this
reason (we won’t use it in cs2110)

A module implements some “abstraction”
You think of the whole module as a kind of big
object

Information Hiding

What “information” do modules hide?
“Internal” design decisions.

A class’s interface is everything in it that is
externally accessible

class Set {
...

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...
}

Encapsulation

By hiding code and data behind its interface,
a class encapsulates its “inner workings”
Why is that good?

Lets us change the implementation later without
invalidating the code that uses the class

class LineSegment {
private Point2D _p1, _p2;

...
public double length() {

return _p1.distance(_p2);
}

}

class LineSegment {
private Point2D _p;
private double _length;
private double _phi;

...
public double length() {

return _length;
}

}

Encapsulation

Why is that good? (continued)

Sometimes, we want a few different classes to
implement some shared functionality
For example, recall the “iterator” construct we saw
in connection with collections:

To support iteration, a class simply needs to
implement the Iterable interface

Iterator it = collection.iterator();

while (it.hasNext()) {
Object next = it.next();
doSomething(next);

}

for (String s: args) {
System.out.println(“Argument “+s);

}

Degenerate Interfaces

Public fields are usually a Bad Thing:

Anybody can change them; the class has no
control

class Set {
public int _count = 0;

public void add(Object o) ...

public boolean contains(Object o) ...

public int size() ...
}

Interfaces vs. Implementations

This says “I need this specific implementation”:

This says “I can operate on anything that
supports the Iterable interface”

Interfaces represent higher levels of abstraction
(they focus on “what” and leave out the “how”)

public void doSomething(LinkedList items) ...

public void doSomething(Iterable items) ...

Use of interfaces?

When a team builds a solution, interfaces can
be very valuable!

Rebecca agrees to implement the code to extract
GPS data from files
Tom will implement the logic to compare bike
routes
Willy is responsible for the GUI

By agreeing on the interfaces between their
respective modules, they can all work on the
program simultaneously

Principle of Least Astonishment

A interface should “hint” at its behavior

Names and comments matter!

Bad:
public int product(int a, int b) {

return a*b > 0 ? a*b : -a*b;
}

Better:
public int absProduct(int a, int b) {

return a*b > 0 ? a*b : -a*b;
}

Principle of Least Astonishment

Unexpected side effects are a Bad Thing

class Integer {
private int _value;
...
public Integer times(int factor) {

_value *= factor;
return new Integer(_value);

}
}
...
Integer i = new Integer(100);
Integer j = i.times(10);

Developer was trying to be
clever. But what does this

code do to i?

Duplication

It is very common to find some chunk of working
code, make a replica, and then edit the replica
But this makes your software fragile: later, when
the code you copied needs to be revised, either

The person doing that changes all instances, or
some become inconsistent

Duplication can arise in many ways:
constants (repeated “magic numbers”)
code vs. comment
within an object’s state
...

“DRY” Principle

Don’t Repeat Yourself

A nice goal is to to have each piece of
knowledge live in one place
But don’t go crazy over it

DRYing up at any cost can increase
dependencies between code
“3 strikes and you refactor” (i.e., clean up)

Refactoring

Refactor: to improve code’s internal structure
without changing its external behavior
Most of the time we’re modifying existing
software
“Improving the design after it has been written”
Refactoring steps can be very simple:

Other examples: renaming variables, methods,
classes

public double weight(double mass) {
return mass * 9.80665;

}

static final double GRAVITY = 9.80665;

public double weight(double mass) {
return mass * GRAVITY;

}

Why is refactoring good?

If your application later gets used as part of a
Nasa mission to Mars, it won’t make mistakes
Every place that the gravitational constant
shows up in your program a reader will realize
that this is what she is looking at
The compiler may actually produce better code

Extract Method

A comment explaining what is being done
usually indicates the need to extract a
method

One of the most common refactorings

public double totalArea() {
...
// now add the circle
area += PI * pow(radius,2);
...

}

public double totalArea() {
...
area += circleArea(radius);
...

}

private double circleArea(double radius) {
return PI * pow(radius, 2);

}

Extract Method

Simplifying conditionals with Extract Method

before
if (date.before(SUMMER_START) || date.after(SUMMER_END)) {
charge = quantity * _winterRate + _winterServiceCharge;

}
else {

charge = quantity * _summerRate;
}

after
if (isSummer(date)) {

charge = summerCharge(quantity);
}
else {

charge = winterCharge(quantity);
}

Refactoring & Tests

Eclipse supports various refactorings

You can refactor manually
Automated tests are essential
to ensure external behavior
doesn’t change
Don’t refactor manually without
retesting to make sure you didn’t
break the code you were “improving”!

More about tests and how to drive
development with tests next week

Summary

We’ve seen that Java offers ways to build general
classes and then to created specialized versions
of them

In fact we saw several ways to do this

Our challenge is to use this power to build clean,
elegant software that doesn’t duplicate
functionality in confusing ways

The developer’s job is to find abstractions and use
their insight to design better code!

	CS 2110
	Recap from last time
	Array vs ArrayList vs HashMap (latter two from java.util)
	HashMap Example
	Generics and Autoboxing
	What do these tell us?
	Our challenge?
	Mapping goes two ways
	So how do people do this?
	A journey of a thosand miles…
	Mistakes will happen!
	So let’s look at how all this works
	… displays match one graph (of the ride) with another graph (the map)
	… comparisons also match two graphs
	Actual data is an XML document containing a list of “track points”
	But the data didn’t “start” as a graph
	Each ride is in a separate file
	So suppose we want to �compare two “rides”
	Which rides were similar?
	Which rides were similar?
	What makes it tricky?
	The idea of abstraction
	Software Engineering
	The software design cycle
	Top-Down Design
	Not a perfect, pretty picture
	Bottom-Up Design
	Top-Down vs. Bottom-Up
	Software Process
	Incremental & Iterative
	Modularity
	A module isn’t just an object
	Information Hiding
	Encapsulation
	Encapsulation
	Degenerate Interfaces
	Interfaces vs. Implementations
	Use of interfaces?
	Principle of Least Astonishment
	Principle of Least Astonishment
	Duplication
	“DRY” Principle
	Refactoring
	Why is refactoring good?
	Extract Method
	Extract Method
	Refactoring & Tests
	Summary

