
CS2042 - Unix Tools
Fall 2010
Lecture 9

Hussam Abu-Libdeh
based on slides by David Slater

September 27, 2010

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Organization

Homework 3 due tomorrow

Any questions?

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Backup

Last time we wrote a simple script to backup a directory:

backupwithdate.sh

#! /bin/bash

tar -czf ∼/bkp/cs2042_$(date +%d_%m_%y).tar.gz ∼/cs2042/

What if we wanted to run this script automatically, say nightly?

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

cron

cron

cron is a program that enables unix users to execute commands or
scripts automatically at a specified date/time

cron is a daemon, which means it only needs to be started
once and will lay dormant until it is required

On most Linux distributions is automatically installed and
entered into the start up scripts so you don’t have to start it
manually:

Check by tying ps -e | grep cron

Depending on your system, it may show up as cron or crond

We can control the cron daemon in a few different ways...

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

cron and root

If you have a look in your /etc directory you will find sub
directories called

cron.hourly

cron.daily

cron.weekly

cron.monthly

If you place a script in any of these directories, it will be run
either hourly, daily, weekly or monthly depending on the name
of the directory.

Note: If we did this with our backup script, we would need to
replace ∼ with /home/hussam since the script would be run
as root.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

cron flexibility

If you want more flexibility in scheduling you can edit a crontab

file

crontab

crontab files are cron’s config files.

The main config file is normally /etc/crontab

You can create your own crontab files without root access!

Type cat /etc/crontab to have a look at the file:

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

main crontab

/etc/crontab: system-wide crontab

Unlike any other crontab you don’t have to run the ‘crontab’

command to install the new version when you edit this file

and files in /etc/cron.d. These files also have username fields,

that none of the other crontabs do.

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17 * * * * root cd / && run-parts --report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)

47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)

52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc cron.monthly)

#

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Crontab Syntax

crontab

Syntax:
a. b. c. d. e. command to be executed

a. min (0-59)

b. hour (0-23)

c. day of month (1-31)

d. month (1-12)

e. day of week (0-6) (Sunday = 0)

Values can be * (all legal values), a range separated by a hyphen, a
single value, a set of values separated by commas or a step value
(i.e. */2 could be every two hours).

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

multiuser crontab

To edit your crontab file type crontab -e

To view your crontab file type crontab -l

To delete your crontab file type crontab -r

A sample line:

30 18 * * * ./home/hussam/backup.sh

This runs the backup script everyday at 6:30PM.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Now back to

scripting!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Passing arguments to scripts

When we pass arguments to a bash script, we can access them in a
very simple way:

$1, $2, ... $10, $11 : are the values of the first, second
etc arguments

$0 : The name of the script

$# : The number of arguments

$* : All the arguments, ”$*” expands to ”$1 $2 ... $n”,

$@ : All the arguments, ”$@” expands to ”$1” ”$2” ... ”$n”

You almost always want to use $@

$? : Exit code of the last program executed

$$: current process id.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Simple Examples

multi.sh

#! /bin/bash/

echo $(($1 * $2))

Usage: ./multi.sh 5 10

Returns first argument multiplied by second argument

To do arithmetic in bash use $((math))

uptolow.sh

#! /bin/bash

tr ’[A-Z]’ ’[a-z]’ < $1 > $2

Usage: ./uptolow.sh file1 file1low

translates all upper case letters to lowercase and writes to
file1low

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Finally if!

If statements are structured just as you would expect:

if cmd1

then

cmd2

cmd3

elif cmd4

then

cmd5

else

cmd6

fi

Each conditional statement evaluates as true if the cmd

executes successfully (returns an exit code of 0)

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

A simple script

textsearch.sh
#! /bin/bash

This script searches a file for some text then

tells the user if it is found or not.

If it is not found, the text is appended

if grep "$1" $2 > /dev/null

then

echo "$1 found in file $2"

else

echo "$1 not found in file $2, appending."

echo $1 >> $2

fi

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

test expressions

We would not get very far if all we could do was test with exit
codes. Fortunately bash has a special set of commands of the form
[testexp] that perform the test testexp. First to compare
two numbers:

n1 -eq n2 : tests if n1 = n2

n1 -ne n2 : tests if n1 6= n2

n1 -lt n2 : tests if n1 < n2

n1 -le n2 : tests if n1 ≤ n2

n1 -gt n2 : tests if n1 > n2

n1 -ge n2 : tests if n1 ≥ n2

If either n1 or n2 is not a number, the test fails.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Test Expressions

We can use test expressions in two ways:

test EXPRESSION

[EXPRESSION]

Either of these commands returns an exit status of 0 if the
condition is true, or 1 if it is false.

Use man test to learn more about testing expressions

Note: Remember you can check the exit status of the last program
using the $? variable.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Example

#! /bin/bash

Created on [2/20/2009] by David Slater

Purpose of Script: Searches a file for two strings and prints which

#is more frequent

Usage: ./ifeq.sh <file> string1 string2

arg=‘grep $2 $1 | wc -l‘

arg2=‘grep $3 $1 | wc -l‘

if [$arg -lt $arg2]

then

echo "$3 is more frequent"

elif [$arg -eq $arg2]

then

echo "Equally frequent"

else

echo "$2 is more frequent"

fi

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

string comparison

To perform tests on strings use

s1 == s2 : s1 and s2 are identical

s1 != s2 : s1 and s2 are different

s1 : s1 is not the null string

Make sure you you leave spaces! s1==s2 will fail!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Expansion

When using testexp variable substitution is performed, but no
matching is perform.

If x is the null string, what will [$x != monster] return?

It will return an error, because $x is expanded to the null string
and the test becomes [!= monster] . To make sure there are
no errors, place your variables inside double quotes. Then
[$x != monster] is expanded to ["" != monster] which
returns true.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Expansion

When using testexp variable substitution is performed, but no
matching is perform.

If x is the null string, what will [$x != monster] return?

It will return an error, because $x is expanded to the null string
and the test becomes [!= monster] . To make sure there are
no errors, place your variables inside double quotes. Then
[$x != monster] is expanded to ["" != monster] which
returns true.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

path testing

If path is a string indicating a path, we can test if it is a valid
path, the type of file it represents and the type of permissions
associated with it:

-e path : tests if path exists

-f path : tests if path is a file

-d path : tests if path is a directory

-r path : tests if you have permission to read the file

-w path : tests if you have write permission

-x path : tests if you have execute permission

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

More on testing

You can combine tests:
if [testexp1 -a testexp2]

then

cmd

fi

-a : and

-o : or

! testexp1 : not

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

A note about debugging

To debug your code, invoke the script with the -x option. You will
then see all the commands successfully executed:

$ bash -x ifeq.sh Frankenstein.txt monster the

++ grep monster Frankenstein.txt

++ wc -l

+ arg=33

++ grep the Frankenstein.xt

++ wc -l

+ arg2=3850

+’[’ 33 -lt 3850 ’]’

+ echo ’the is more frequent’

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

More stuff

We can now begin to ensure our scripts get the input we want:

if [-f $1]

then

Perform the action you want

else

echo "This script needs a file as its input

dummy!"

fi

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Example:

In homework 1, you had to download and run a script, which we
should now understand.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Pipes are us

Sometimes to make our code cleaner we would like to pipe
between lines. To do this we just need to escape the invisible
newline character

cat myfile | grep ’someregularexpression’ | tr ’ ’ ’\n’ |\

sort | head

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Putting it on one line

Sometimes we might want to type a multiline command into the
shell, we can do this by hitting enter for each line, or by using
semicolons to tell the shell to start new lines:

Example:

if [testexpr] ; then command1 ; command2 ; fi

Real Example:

if [$? -eq 0] ; then echo "Last Command Successful!" ; fi

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

awk and sed scripts

Remember that gawk and sed are complete scripting languages so
we can write gawk and sed scripts:

Example: iouscript.gwk

#! /bin/gawk -f

BEGIN {FS = " " }

NR > 1 { Names[$1]+=$2 }

END {for(i in Names) print i " owes me " Names[i] " Dollars."}

Note: You must tell gawk to read from a file by using the -f

flag.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

sed scripts

sed scripts work similarly

trim.sed
#! /bin/sed -f

s/^$//

s/^#[^!]+//

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

