
CS2042 - Unix Tools
Lecture 3

Making Bash Work For You
Fall 2010

Hussam Abu-Libdeh
based on slides by David Slater

September 13, 2010

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

A little homework

Homework 1 out now

Due on Thursday at 11:59PM

Moving around and GNU file tools

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell’s Again

Many shells for UNIX-like systems:

sh: The Bourne Shell -
a popular shell made by Stephen Bourne

bash: The Bourne Again Shell -
default shell for the GNU OS, most Linux distros, and OSX

csh: The C Shell -
interactive and close to C
default shell for BSD-based systems

zsh: The Z Shell -
possibly the most fully-featured shell inspired by sh, bash, ksh,
and tcsh

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell’s Again

Since bash is the gold standard of shells and has more than
enough features for this course, we’ll stick with it.

For more info, use Wikipedia as a starting point:
http://en.wikipedia.org/wiki/Comparison of command shells

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

http://en.wikipedia.org/wiki/Comparison_of_command_shells

But the CSUG machines do not default to Bash :(

The CSUG machines automatically put us into csh not bash.

If you are already logged in to the server, just type bash

More importantly we would like the server to automatically
put us into bash when we login. One way to do this is by
editing the file /.login which gets executed each time you
log in to the server and csh starts up.

Start bash automatically

Add the following line to the end of /.login

if (-f /bin/bash) exec /bin/bash --login

If you had root privileges you could just edit /etc/passwd and find
the line corresponding to the current user.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Variables!

Bash scripting is very powerful! If you wanted to you could
write a web server using Bash scripting.

To get anything done we need variables. In Bash, all variables
are preceded by a dollar sign ($).

The contents of any variable can be listed using the echo

command

Two types of variables: Local and Environment.

Example:

echo $SHELL

/bin/bash

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Environment Variables

Environment Variables are used by the system to define
aspects of operation.

The Shell passes environment variables to its child processes

Examples:
$Shell - which shell will be used by default
$PATH - a list of directories to search for binaries
$HOSTNAME - the hostname of the machine
$HOME - current user’s home directory

To get a list of all current environment variables type env

New Environment Variable:

To set a new environment variable use export

hussam@rumman:∼$ export X=3

hussam@rumman:∼$ echo $X

3

Note: NO Spaces around the = sign.
Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Local Variables

We can also define local variables, which exist only in the current
shell:

Example:

hussam@rumman:∼$ x=3

hussam@rumman:∼$ echo $x

3

Note: There cannot be a space after the x nor before the 3!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

A Word About the Difference

The main difference between environment variables and local
variables is environment variables are passed to child processes
while local variables are not:

Local Variable:
hussam@rumman:∼$ x=3

hussam@rumman:∼$ echo $x

3

hussam@rumman:∼$ bash

hussam@rumman:∼$ echo $x

hussam@rumman:∼$

Environment Variable:
hussam@rumman:∼$ export x=myvalue

hussam@rumman:∼$ echo $x

myvalue

hussam@rumman:∼$ bash

hussam@rumman:∼$ echo $x

myvalue

hussam@rumman:∼$

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Environment Variables Again...

When we say the Shell passes environment variables to its child
processes, we mean a copy is passed. If the variable is changed in
the child process it is not changed for the parent

Example:

hussam@rumman:∼$ export x=value1

hussam@rumman:∼$ bash

hussam@rumman:∼$ echo $x

value1

hussam@rumman:∼$ export x=value2

hussam@rumman:∼$ exit

hussam@rumman:∼$ echo $x

value1

We will talk about why this is important once we have more
programs at our disposal.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Listing and Removing Variables

env - displays all environment variables

set - displays all shell/local variables

unset name - remove a shell variable

unsetenv name - remove an environment variable

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Using Bash Efficiently

Now lets talk about how bash makes life easier.

Tab Completion

You can use the Tab key to auto-complete commands, parameters,
and file and directory names. If there are multiple choices based on
what you’ve typed so far, Bash will list them all!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansion

In a bash shell, if we type:
$ echo This is a test

This is a test

But if we type
$ echo *

Lec1.pdf Lec1.dvi Lec1.tex Lec1.aux

What happened?

The shell expanded * to all files in the current directory. This is an
example of path expansion, one type of shell expansion.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansion

In a bash shell, if we type:
$ echo This is a test

This is a test

But if we type
$ echo *

Lec1.pdf Lec1.dvi Lec1.tex Lec1.aux

What happened?
The shell expanded * to all files in the current directory. This is an
example of path expansion, one type of shell expansion.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Interpreting Special Characters

The following are special characters:

$ * < > & ? { } []

The shell interprets them in a special way unless we escape
(\$) or place them in quotes “$”.

When we first invoke a command, the shell first translates it
from a string of characters to a UNIX command that it
understands.

A shell’s ability to interpret and expand commands is one of
the powers of shell scripting.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

The shell interprets $ in a special way.

If var is a variable, then $var is the value stored in the
variable var.

If cmd is a command, then $(cmd) is translated to the result
of the command cmd.

hussam@rumman:∼$ echo $USER

hussam

hussam@rumman:∼$ echo $(pwd)

/home/hussam

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

* ^ ? { } [] Are all “wildcard” characters that the shell uses
to match:

Any string

A single character

A phrase

A restricted set of characters

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

* matches any string, including the null string (i.e. 0 or more
characters).

Examples:

Input Matched Not Matched

Lec* Lecture1.pdf Lec.avi ALecBaldwin/

L*ure* Lecture2.pdf Lectures/ sure.txt

*.tex Lecture1.tex Presentation.tex tex/

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

? matches a single character

Examples:

Input Matched Not Matched

Lecture?.pdf Lecture1.pdf Lecture2.pdf Lecture11.pdf

ca? cat can cap ca cake

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

[...] matches any character inside the square brackets

Use a dash to indicate a range of characters
Can put commas between characters/ranges

Examples:
Input Matched Not Matched

[SL]ec* Lecture Section Vector.tex

Day[1-4].pdf Day1.pdf Day2.pdf Day5.pdf

[A-Z,a-z][0-9].mp3 A9.mp3 z4.mp3 Bz2.mp3 9a.mp3

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

[^...] matches any character not inside the square brackets

Examples:
Input Matched Not Matched

[^A-P]ec* Section.pdf Lecture.pdf

[^A-Za-z]* 90210 9Days.avi .bash_profile vacation.jpg

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

Brace Expansion: {...,...} matches any phrase inside
the comma-separated brackets

Examples:
Input Matched

{Hello,Goodbye}\ World Hello World Goodbye World

NOTE: brace expansion must have a list of patterns to choose
from (i.e. at least two options)

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Shell Expansions

And of course, we can use them together:

Input Matched Not Matched

i[a-z]e gift_ideas profile.doc ice DriVer.exe

[bf][ao][ro].mp? bar.mp3 foo.mpg far.mp4 foo.mpeg

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Quoting

If we want the shell to not interpret special characters we can use
quotes:

Single Quotes (’): No special characters are evaluated

Double Quotes (“): Variable and command substitution is
performed

Back Quotes (`): Execute the command within the quotes

Example

hussam@rumman:∼$ echo "$USER owes me $ 1.00"

hussam owes me $ 1.00

hussam@rumman:∼$ echo ’$USER owes me $ 1.00’

$USER owes me $ 1.00

hussam@rumman:∼$ echo "I am $USER and today is

`date`"+

I am hussam and today is Wed Feb 11 16:23:30 EST 2009

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Arithmetic Expansion

The shell will expand arithmetic expressions that are encased in $((
expression))

Examples

hussam@rumman:∼$ echo $((2+3))

5

hussam@rumman:∼$ echo $((2 < 3))

1

hussam@rumman:∼$ echo $((x++))

3

And many more.
Note: the post-increment by 1 operation (++) only works on
variables

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Aliases

The more you use Bash the more you see what options you use all
the time. For instance ls -l to see permissions, or rm -i to
insure you don’t accidentally delete a file. Wouldn’t it be nice to
be able to make shortcuts for these things?

Alias:

alias name=command

The alias allows you to rename or type something simple
instead of typing a long command

You can set an alias for your current session at the command
prompt

To set an alias more permanently add it to your .bashrc or
.bash_profile file.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Alias Examples

Examples

alias ls=’ls --color=auto’

alias dc=cd

alias ll=’ls -l’

Quotes are necessary if the string being aliased is more than
one word

To see what aliases are active simply type alias

Note: If you are poking around in .bashrc you should know
that any line that starts with # is commented out.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Modifying your Prompt

The environment variable $PS1 stores your default prompt. You
can modify this variable to spruce up your prompt if you like:

Example

First echo $PS1 to see its current value
\s-\v\$ (default)

It consists mostly of backslash-escaped special characters, like \s

(name of shell) and \v (version of bash). There are a whole bunch
of options, which can be found at
http://www.gnu.org/software/bash/manual/bashref.html#Printing-a-Prompt

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

http://www.gnu.org/software/bash/manual/bashref.html#Printing-a-Prompt

Modifying Your Prompt

Once you have a prompt you like, set your $PS1 variable

Define your prompt

hussam@rumman:∼$ export PS1="New Prompt String"

Type this line at the command prompt to temporarily change
your prompt (good for testing)

Add this line to ~/.bashrc or ~/.bash_profiles to make
the change permanent.

Note: Parentheses must be used to invoke the characters.

Examples

PS1="\u \w \t_" ⇒ hussam ~ 12:12:12_

PS1="\W \j \d\:" ⇒ ~ 0 Oct 02:

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

