
CS2042 - Unix Tools
Fall 2010

Lecture 11

Hussam Abu-Libdeh
based on slides by David Slater

October 1, 2010

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Intro To Screen

The screen command

screen - a screen manager with terminal emulation

Generally screen can be used just as you would normally use a
terminal window. However, special commands can be used to allow
you to save your session, create extra shells, or split the window
into multiple independent panes.

Passing Commands to screen

Each screen commands consists of a CTRL-a (hereafter referred
to as C-a) followed by another character.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Using Screen

Attach a screen

screen [options]

Opens a new screen for use

-a : include all capabilities

Resume a screen

screen -r [pid.tty.host]

Resumes a detached screen session

screen -x [pid.tty.host]

Attach to a non-detached screen session

If you only have one screen, the [pid.tty.host] string is unnecessary.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Identifying Screen Sessions

Screen Listing

screen -ls or screen -list

Lists your screen sessions and their statuses

These screen sessions are the [pid.tty.host] strings required for
resuming

Resuming a screen

If screen -ls returns 15829.pts-9.rumman (Detached)

screen -r 15829.pts-9.rumman to resume the screen

Note: You only need to specify the full “name” of the session if
you have multiple sessions open. If you just have one session, just
use screen -r

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Creating More Shells

Creates a New Shell Window

C-a c

Creates a new shell in a new window and switches to it

Useful for opening multiple shells in a single terminal

Similar to tabbed browsing/tabbed IMs

But how do we switch between windows? (hint: every window is
numbered by order of creation)

Window Selection

C-a 1 - switches to window 1 C-a 9 - switches to window 9

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Splitting Screen

Split Screen Computing

C-a S - splits your terminal area into multiple panes
C-a tab - changes the input focus to the next pane

The ’S’ is case-sensitive

Each split results in a blank pane

Use C-a c to create a new shell in a pane

Use C-a <num> to move an existing window to a pane

Note:

When you reattach a split screen, the split view ill be gone. Just
re-split the view, then switch between panes and reopen the other
windows in each with C-a <num>

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Now lets put this together to do something useful

Suppose you are doing some serious scientific computing and want
to run it on a remote server. We can put together what we have
learned to do this efficiently:

ssh into the remote machine

ssh slater@boom.cam.cornell.edu

start screen

screen

start mathematica

math < BatchJob.m

renice the math kernel so other uses can use the machine

renice -20 PID

Detach the screen, logout, and come back 8 hours later when
it is done

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

The Other Way

If you have a noninteractive batch job, you can also allow it to
continue to run after you logout by using nohup

nohup

nohup command

command will continue to run after you logout

output is sent to nohup.out if not otherwise redirected

can be combined with nice

Example:

nohup nice -15 math < BatchJob.m &

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Back to scripting

Back to scripting

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Some Review

What does this do?

#! /bin/bash

gawk ’$1 = "’$1’" {count++ ; print $2}
END { print count}’ infile

Prints the second field whenever the first matches the first
argument and then prints the total number of matched lines.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Some Review

What does this do?

#! /bin/bash

gawk ’$1 = "’$1’" {count++ ; print $2}
END { print count}’ infile

Prints the second field whenever the first matches the first
argument and then prints the total number of matched lines.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Arithmetic

A little arithmetic can be useful and BASH can perform all the
standard operators

Arithmetic

a++, a– : Post-increment/decrement

++a, –a : Pre-increment/decrement

a+b, a-b : Addition/subtraction

a*b, a/b : Multiplication/division

a%b : Modulu

a**b : Exponential

a>b, a<b : Greater than, less than

a==b, a!=b : Equality/inequality

=, +=, -= : Assignments

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Using Arithmetic Expressions

We have already seen one way to do arithmetic:

Example:

echo $((2+5))

7

We can also use it as part of a larger command:

The ”Let” Built-In

VAR1=2

let VAR2=$VAR1+15

let VAR2++

echo $VAR2

18

let evaluates all expressions following the equal sign

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

The Difference

There are two major differences:

all characters between the ((and)) are treated as quoted (no
shell expansion)

The let statement requires there be no spaces anywhere (so
need to quote)

Example:

let "i=i + 1"

i=$((i + 1))

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Loopy loops!

The while loop
while cmd

do

cmd1

cmd2

done

Executes cmd1, cmd2 as long as cmd is successful (i.e. its exit
code is 0).

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

While loop example

i="1"

while [$i -le 10]

do

echo "$i"

i=$(($i+1))

done

This loop prints all numbers 1 to 10.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Until we meet again...

Until loop
until cmd

do

cmd1

cmd2

done

Executes cmd1, cmd2 as long as cmd is unsuccessful (i.e. its exit
code is not 0).

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Until loop example

i="1"

until [$i -ge 11]

do

echo i is $i

i=$(($i+1))

done

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

The almighty for loop

for loop
for var in string1 string2 ... stringn

do

cmd1

cmd2

done

The for loop actually has a variety of syntax it can accept. We will
look at each in turn.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

for loop example

#! /bin/bash

lcountgood.sh

i="0"

for f in "$@"

do

j=‘wc -l < $f‘

i=$(($i+$j))

done

echo $i

Recall that $@ expands to all arguments individually quoted
(”arg1” ”arg2” etc).

This script counts lines in a collection of files. For instance to
count the number of lines of all the files in your current directory
just run ./lcountgood.sh *

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

for loop example

What happens if we change $@ to $*? Recall that $* expands to
all arguments quoted together (”arg1 arg2 arg3”)

#! /bin/bash

lcountbad.sh

i="0"

for f in "$*"

do

j=‘wc -l < $f‘

i=$(($i+$j))

done

echo $i

This does not work! Lets look at why.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Why we don’t like $*

Consider
#! /bin/bash

explaingood.sh

j=0

for i in "$@"

do

j=$(($j+1))

echo $i

done

echo $j

This simply echos all the files you pass to the script and how many.

$./explaingood.sh *

explainbad.sh

explaingood.sh

lcountright.sh

lcountwrong.sh

4

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Why we don’t like $*

But if we change to $*
#! /bin/bash

explainbad.sh

j=0

for i in "$*"

do

j=$(($j+1))

echo $i

done

echo $j

This simply echos all the files at once and the number 1:

$./explaingood.sh *

explainbad.sh explaingood.sh lcountright.sh lcountwrong.sh

1

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

other for loop syntax

We can also do things like:

for i in {1..10}
do

echo $i

done

To print 1 to 10.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

other for loop syntax

We can also do things like:

for i in $(seq 1 2 20)

do

echo $i

done

1

3

5

7

9

11

13

15

17

19

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

even more for loop syntax!

We can also do something more traditional:

for ((c=1; c<=5; c++))

do

echo $c

done

To print 1 to 5 (spaces around c=1 etc do not matter)

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

An infinite loop

We can now create infinite for loops if we want

for ((; ;))

do

echo "infinite loop [hit CTRL+C to stop]"

done

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

can’t catch a break

We can use break to exit for, while and until loops early

for i in some set

do

cmd1

cmd2

if (disaster-condition)

then

break

fi

cmd3

done

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

continue

We can use continue to skip to the next iteration of a for,

while or until loop.

for i in some set

do

cmd1

cmd2

if (i don’t like cmd3-condition)

continue

fi

cmd3

done

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Reading in input from the user

You can ask the user for input by using the read command

read

read varname

Asks the user for input

By default stores the input in $REPLY

Can read in multiple variables read x y z

-p option allows you to print some text

Example:
read -p "How many apples do you have? " apples

How many apples do you have? 5

$ echo $apples

5

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Other uses for read

read can also be used to go line by line through a file or any other
kind of input:

Example:

cat /etc/passwd | while read LINE ; do echo $LINE done

Prints the contents of /etc/passwd line by line

ls *.txt | while read LINE ; do newname=$(echo $LINE |\
sed ’s/txt/text/’); mv -v "$LINE" "$(newname)" ; done

Renames all .txt files in the current directory as .text files.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Other uses for read

read can also be used to go line by line through a file or any other
kind of input:

Example:

cat /etc/passwd | while read LINE ; do echo $LINE done

Prints the contents of /etc/passwd line by line

ls *.txt | while read LINE ; do newname=$(echo $LINE |\
sed ’s/txt/text/’); mv -v "$LINE" "$(newname)" ; done

Renames all .txt files in the current directory as .text files.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

Other uses for read

read can also be used to go line by line through a file or any other
kind of input:

Example:

cat /etc/passwd | while read LINE ; do echo $LINE done

Prints the contents of /etc/passwd line by line

ls *.txt | while read LINE ; do newname=$(echo $LINE |\
sed ’s/txt/text/’); mv -v "$LINE" "$(newname)" ; done

Renames all .txt files in the current directory as .text files.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

a case of case?

case
case allows you to execute a sequence of if else if statements in a
more concise way:

case expression in

pattern1)

statements ;;

pattern2)

statements ;;

...

esac

Here the patterns are expanded using shell expansion. We can
use match one of several patterns by separated by a pipe |.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

superficial example

$ type=short

$ case $type in

tall)

echo "yay tall"

;;

short | petite)

echo "your height is most likely not that great"

;;

hid*)

echo "variable type starts with hid..."

;;

*)

echo "none of the cases matched :("

;;

esac

your height is most likely not that great

the case statement stops the first time a pattern is matched

the case *) is a catchall for whatever did not match.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools

