
CS2042 - Unix Tools
Fall 2010

Lecture 10

Hussam Abu-Libdeh
based on slides by David Slater

September 29th, 2010

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Vim = Awesome!

Vim is a powerful lightweight text editor.

The name “Vim” is an acronym for “Vi IMproved”

vi is an older text editor

Ports of Vim are available for all systems

including Microsoft Windows

Vim allows you to perform text editing tasks much faster than
most other text editors!

Though it does have a learning curve

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



A modal text editor

One of the reasons that Vim allows you to performs tasks
quickly is because it works in modes.

Without modes, users would have to either use command
menus (with a mouse or keyboard), or use complex/long
command shortcut keys involving the control key (ctrl) or
the alt key (alt).

Vim uses modes to speed up editing by not relying on
command keys or menus.

You can do all of your editing by just using the keyboard which is
super fast!!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



The 3 main modes of Vim

Normal mode:
Launching pad to issue commands or go into other modes
Allows you to view the text but not edit it
Vim starts in normal mode
You can jump to normal mode by pressing the Escape (Esc)
key on your keyboard

Visual mode:
Used to highlight text and perform operations on selected text
You get to visual mode from normal mode by pressing the v

key on your keyboard

Insert mode:
Used to type text into the buffer (file)
This probably what you’re used to from your text editor
You get to the insert mode by pressing the i key on your
keyboard

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Command line commands

You can issue “command-line commands” from inside Vim to
perform some functionalities

write to disk, quite, get help, split screen, ...etc

To issue a command, go to normal mode and the type :

followed by your command

Launching Vim help

:help

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Moving around

Fast

You can use your mouse to move around in Vim (assuming a
graphical interface as in gVim

Faster

However it is much faster to just use your keyboard, and for that
you can just use the arrow keys to move up/down/left/right.

Fastest

You can even be more efficient by not leaving the main area of the
keyboard and using “h” to go left, “j” to go down, “k” to go up,
and “l” to go right.

To start off, I recommend you just use the arrow keys.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Getting started

To get started, launch Vim and go through the built in help.

:help

You can search for help on a specific topic as well.

:help [topic to search for]

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Helpful commands

I can’t possibly teach you about all the power of Vim in a few
minutes, however here are a few commands to help you get started.

Getting help

:help

Entering normal mode

<Esc>

Entering insert mode (from normal)

<i>

Entering visual mode (From normal)

<v>

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Helpful commands

Save text to filename.txt

:w filename.txt

Exit
:q

Quit without saving

:q!

Open another file

:e [filename]

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Helpful commands

Turn on syntax highlighting

:syntax on

Turn on line numbering

:set number

Turn on spell check

:set spell

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Helpful commands

Split screen horizontally
:sp

Split screen vertically
:vsp

Move between split regions

<ctrl-w w>

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



The most helpful command

The Most Helpful Command By Far

:help

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



GUI + Vim

Vim can run right in your shell, but there are also implementations
of it that run in a nice GUI window (with menus, toolbars, and
mouse)

Use gVim for that

I also heard about (but not used) MacVim for Mac OS X

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Useful links

Vim project website

http://www.vim.org/

Vim tips and tricks

http://www.cs.swarthmore.edu/help/vim/home.html

Vim recipes

http://vim.runpaint.org/toc/

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



.. switching gears ..

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Process? What Process?

Definition

A process is an instance of a running program

More specific than ”a program” because it’s being executed.

More specific than ”a running program” because the same
program can be run multiple times simultaneously

Example:

Many users could be simultaneously running ssh to connect to
other servers. In this case, each instance of ssh is a separate
process.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Process Identification

How do we tell one process from another?

Each process is assigned a unique ”Process ID” (or PID)
when it is created

These PIDs are used to differentiate between separate
instances of the same program

How do we find out which processes are running, and with which
PIDs?

The Process Snapshot Command

ps [options]

Reports a snapshot of the current running processes, including
PIDs

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



By default, ps is not all that useful because it only lists processes
started by the user in the current terminal. Instead...

ps Options

ps -e – Lists every process currently running on the system

ps -ely – Gives more info about your processes than you’ll
ever need

ps -u username – Lists all processes for user username.

NOTE: Options for BSD venison are different! (See manpage)

To see information about a specific process, pipe through
grep.

For example,

ps -e | grep firefox

shows us information about all firefox processes

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Priority

Suppose you want to run some long running scientific calculation
that might take days and consume 100% of the CPU on some
server. Wouldn’t it be nice if there was some way to tell the server
to give your process less priority with CPU time?

Remember that although UNIX seems to run tens or hundreds
of processes at once, one CPU can only run one process at a
time.

Quick switching back and forth between processes makes it
seem as though they are all running simultaneously

UNIX Developers saw this type of situation coming - each process
is given a priority value when it starts.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Initial Priority

Start a process with a non-default priority:

The nice command

nice [options] command

Runs command with a specified ”niceness value” (default: 10)

Niceness values range from -20 (highest priority) and 19
(lowest priority)

Only root can give a process a negative niceness value!

Commands run without nice have priority 0.

Example:

nice -n 10 azureus

Keeps torrent downloads from hogging all our CPU time!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Adjusting Priority

Adjust the niceness of a running process:

The renice command

renice <priority> -p <PID>

Changes the niceness of the indicated process to <priority>

Again, only root can go below 0!

Can only renice processes YOU started!

Example:

renice 5 -p 10275

Sets the niceness of the process with PID 10275 to 5 (slightly
lower priority than default)

renice 19 -u hussam

renice all my processes to 19

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Going Rogue...

To end a process running in the foreground simply hit Ctrl + C

What about a background process that stops working?

What is the UNIX version of CTRL + ALT + DELETE?

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



The kill command

kill

kill [-signal] <PID>

Sends the specified signal to the process

By default, terminates execution

So to terminate a process:

Look up the process’s PID with ps

Use that PID to kill the process

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Useful Kill Signals

Signal used with kill can either be specified by their names or
numerical values.

TERM or 15 : Terminates execution (default)

HUP or 1 : Hang-up (restarts the program)

KILL or 9 : Like bleach, can kill anything

Generally speaking, the default TERM will get the job done.

Example:

kill 9000 : terminates process 9000

kill -9 3200 : REALLY kills PID 3200

kill -HUP 12118 : Restarts 12118 (handy for servers &
daemons)

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



all in one: top

top is a useful little program that lists and dynamically updates
information about running programs. It also allows the user to kill
and renice other processes.

top

top [-options]

Lists processes by default by percentage of CPU usage

Customizable display, hit h for a list options

u - show specified user only

Can manipulate tasks: ’k’ kill; ’r’ renice

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Introduction to Jobs

Jobs

A Job is a process running under the influence of a job control
facility.

What does that mean?!?!?!?!?

Job control is a built-in feature of most shells, allowing the
user to pause and resume tasks, as well as run them in the
background (so that the shell is usable while it executes!)

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



How does this help?

Lets use the ping command as an example.

Ping

ping <server>

Measures the network response time (or network latency) to a
remote server.

Sends short bursts to the server, then measures the time until
they are returned.

Can be a good way to check your network connection

Try pinging a reliable location, like google.com

Example:

ping google.com

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Why We Need Job Control

As long as ping runs, we lose control of our shell. This happens
with many applications which run either indefinitely or for long
periods:

Moving large quantities of files

Compiling source code

Playing multimedia

Doing Scientific Computing

Example:

mpg123 song.mp3

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Starting a Job in the background

To run a job in the background, we will use a new command-line
operator:

&

<command> [arguments] &

Runs the specified command as a background job

Unless told otherwise, will send output to the terminal!

Since cat runs indefinitely with no arguments, this will illustrate
our point:

Example:

cat &

Try it without the &!

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Backgrounding a Running Job

What if we start a process normally and it’s taking too long?

Pausing a Job

Press CTRL + Z to pause a running process!

When we do this, the shell tells us the paused job’s JOB ID

This Job ID is used like a process’s PID

Once we have a process paused, we can tell it to continue in
the background...

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



The Background Command

bg’s Usage

bg <Job ID>

Resumes a paused job in the background

Without a Job ID resumes the last job placed in the
background

how do we find these Job IDs?

the Job Table

jobs

Prints currently running, paused, or recently stopped jobs

Prints jobs with their Job IDs

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Foregrounding an Existing Job

What if we want to resume a job in the foreground?

fg’s usage

fg <Job ID>

Resumes a paused job in the foreground

Again without a Job ID resumes the last command placed in
the background

To kill a job, either foreground it and the hit CTRL+C, or you can
use the kill command with the PID

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



Dealing with Excess Output

Many programs output continuously as they run. For example
ping and play both clutter up the terminal with output even
when they are backgrounded.

The solution is to use output redirection

Example:

ping google.com > testping.log &

When you care about a program’s output, redirect it to a log
file.

Example:

play somesong.mp3 > /dev/null &

If the text output doesn’t matter, redirect it to /dev/null.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools



/dev/null - the black hole

/dev/null is a special file which has the following properties:

Any user can write to it.

Anything written to it goes nowhere

it always reports a successful write.

It works like a black hole for data - you
can output to it all day and it will never
fill up. Anything you redirect to
/dev/null just disappears.

Hussam Abu-Libdeh based on slides by David Slater CS2042 - Unix Tools


