
Introduction to C
To Be a Master Programmer

Instructor: Yin Lou

02/18/2011

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression

I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow
I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management
I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression
I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow
I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management
I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression
I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow

I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management
I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression
I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow
I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management
I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression
I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow
I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management

I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression
I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow
I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management
I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Types, operators and expression
I int, unsigned int, long double, etc
I &&, ||; &, |, >>, <<

I Control flow
I if-else, switch, while, do-while, for
I break; continue

I Functions, program structure, and project management
I Recursion
I Header file
I Makefile

I Pointers and arrays
I int *p = &x;
I int a[10];
I int *p = (int *) malloc(n * sizeof(int));
I Array names are constant while pointers are usually variables.

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types

I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing

I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O

I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads

I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?

I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Course Recap

I Complex types
I enum, struct, union
I typedef
I function pointers

I Preprocessing
I #include, #define, #ifndef, #endif

I Standard I/O
I printf, sprintf, fprintf
I scanf, sscanf, fscanf
I fread, fwrite

I Threads
I pthread

I All these can be done with?
I The compiler: gcc

Introduction to C CS 2022, Spring 2011, Lecture 12

Start with Hello World

#include <stdio.h>

int main()

{

printf("Hello World\n");

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

Can you answer the following question?

I Why do programs need to be compiled before execution?

I What does the compiler do during the process of converting C
source code to machine code and how?

I What does the executable code look like? What else besides
machine code? How do they store and organize?

I What does “#include <stdio.h>” mean? Why we need to
include it? What is a C library and how is it implemented?

I Do codes compiled by different compilers (gcc, Microsoft VC)
on different machines (x86, ARM) look the same? Why?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

Can you answer the following question?

I Why do programs need to be compiled before execution?

I What does the compiler do during the process of converting C
source code to machine code and how?

I What does the executable code look like? What else besides
machine code? How do they store and organize?

I What does “#include <stdio.h>” mean? Why we need to
include it? What is a C library and how is it implemented?

I Do codes compiled by different compilers (gcc, Microsoft VC)
on different machines (x86, ARM) look the same? Why?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

Can you answer the following question?

I Why do programs need to be compiled before execution?

I What does the compiler do during the process of converting C
source code to machine code and how?

I What does the executable code look like? What else besides
machine code? How do they store and organize?

I What does “#include <stdio.h>” mean? Why we need to
include it? What is a C library and how is it implemented?

I Do codes compiled by different compilers (gcc, Microsoft VC)
on different machines (x86, ARM) look the same? Why?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

Can you answer the following question?

I Why do programs need to be compiled before execution?

I What does the compiler do during the process of converting C
source code to machine code and how?

I What does the executable code look like? What else besides
machine code? How do they store and organize?

I What does “#include <stdio.h>” mean? Why we need to
include it? What is a C library and how is it implemented?

I Do codes compiled by different compilers (gcc, Microsoft VC)
on different machines (x86, ARM) look the same? Why?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

Can you answer the following question?

I Why do programs need to be compiled before execution?

I What does the compiler do during the process of converting C
source code to machine code and how?

I What does the executable code look like? What else besides
machine code? How do they store and organize?

I What does “#include <stdio.h>” mean? Why we need to
include it? What is a C library and how is it implemented?

I Do codes compiled by different compilers (gcc, Microsoft VC)
on different machines (x86, ARM) look the same? Why?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

I How does our “Hello World” run? How does the operating
system load it? Where does it start execution? Where does it
end execution? What happens before main function? What
happens after main function?

I If there’s no operating system, can our “Hello World” run? If
we need to run “Hello World” on a machine without operating
system, how can we make it?

I How is “printf” implemented? Why it can have variable-length
argument list? Why it can output characters to the terminal?

I What does “Hello World” look like in the memory?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

I How does our “Hello World” run? How does the operating
system load it? Where does it start execution? Where does it
end execution? What happens before main function? What
happens after main function?

I If there’s no operating system, can our “Hello World” run? If
we need to run “Hello World” on a machine without operating
system, how can we make it?

I How is “printf” implemented? Why it can have variable-length
argument list? Why it can output characters to the terminal?

I What does “Hello World” look like in the memory?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

I How does our “Hello World” run? How does the operating
system load it? Where does it start execution? Where does it
end execution? What happens before main function? What
happens after main function?

I If there’s no operating system, can our “Hello World” run? If
we need to run “Hello World” on a machine without operating
system, how can we make it?

I How is “printf” implemented? Why it can have variable-length
argument list? Why it can output characters to the terminal?

I What does “Hello World” look like in the memory?

Introduction to C CS 2022, Spring 2011, Lecture 12

Master Programmer vs. Beginner

I How does our “Hello World” run? How does the operating
system load it? Where does it start execution? Where does it
end execution? What happens before main function? What
happens after main function?

I If there’s no operating system, can our “Hello World” run? If
we need to run “Hello World” on a machine without operating
system, how can we make it?

I How is “printf” implemented? Why it can have variable-length
argument list? Why it can output characters to the terminal?

I What does “Hello World” look like in the memory?

Introduction to C CS 2022, Spring 2011, Lecture 12

What Happens?

$gcc hello.c -o hello

$./hello

GCC does this 4 steps automatically for you:

I Preprocessing

I Compilation

I Assembly

I Linking

Introduction to C CS 2022, Spring 2011, Lecture 12

What Happens?

$gcc hello.c -o hello

$./hello

GCC does this 4 steps automatically for you:

I Preprocessing

I Compilation

I Assembly

I Linking

Introduction to C CS 2022, Spring 2011, Lecture 12

Preprocessing

I Remove all #define and expand all macros

I Process all #if, #ifdef, #ifndef, #elif, #else, #endif

I Process #include recursively

I Remove all comments (“//”, “/* ... */”)

I Add line number and file name identification, for example, #2
“hello.c” 2, to help compiler output debugging information

I Retain all #program because the compiler needs them.

$gcc -E hello.c -o hello.i

Introduction to C CS 2022, Spring 2011, Lecture 12

Preprocessing

I Remove all #define and expand all macros

I Process all #if, #ifdef, #ifndef, #elif, #else, #endif

I Process #include recursively

I Remove all comments (“//”, “/* ... */”)

I Add line number and file name identification, for example, #2
“hello.c” 2, to help compiler output debugging information

I Retain all #program because the compiler needs them.

$gcc -E hello.c -o hello.i

Introduction to C CS 2022, Spring 2011, Lecture 12

Compilation

I Scanner: Lexical analysis

I Parser: Syntactical analysis

I Semantic analysis

I Optimization

$gcc -S hello.i -o hello.s

Introduction to C CS 2022, Spring 2011, Lecture 12

Compilation

I Scanner: Lexical analysis

I Parser: Syntactical analysis

I Semantic analysis

I Optimization

$gcc -S hello.i -o hello.s

Introduction to C CS 2022, Spring 2011, Lecture 12

Assembly

I Convert assembly code to machine code

$as hello.s -o hello.o

or

$gcc -c hello.s -o hello.o

Introduction to C CS 2022, Spring 2011, Lecture 12

Assembly

I Convert assembly code to machine code

$as hello.s -o hello.o

or

$gcc -c hello.s -o hello.o

Introduction to C CS 2022, Spring 2011, Lecture 12

Linking

I Why do we need linking?

I Why doesn’t the assembler output an executable file rather
than a object file?

I What happens when linking?

$ld -static /usr/lib/crt1.o /usr/lib/crti.o

/usr/lib/gcc/i486-linux-gnu/4.1.3/crtbeginT.o

-L/usr/lib/gcc/i486-linux-gnu/4.1.3 -L/usr/lib -L/lib hello.o --start-group

-lgcc -lgcc_eh -lc --end-group /usr/lib/gcc/i486-linux-gnu/4.1.3/crtend.o

/usr/lib/crtn.o

Introduction to C CS 2022, Spring 2011, Lecture 12

Linking

I Why do we need linking?

I Why doesn’t the assembler output an executable file rather
than a object file?

I What happens when linking?

$ld -static /usr/lib/crt1.o /usr/lib/crti.o

/usr/lib/gcc/i486-linux-gnu/4.1.3/crtbeginT.o

-L/usr/lib/gcc/i486-linux-gnu/4.1.3 -L/usr/lib -L/lib hello.o --start-group

-lgcc -lgcc_eh -lc --end-group /usr/lib/gcc/i486-linux-gnu/4.1.3/crtend.o

/usr/lib/crtn.o

Introduction to C CS 2022, Spring 2011, Lecture 12

Static Linking

I Routines, external functions and variables which are resolved
in a caller at compile-time

I Advantages

I Application can be certain that all its libraries are present and
that they are the correct version.

I No dependency problem.
I In some cases, static linking can have performance gain.
I Allows the application to be contained in a single executable

file, simplifying distribution and installation.

Introduction to C CS 2022, Spring 2011, Lecture 12

Static Linking

I Routines, external functions and variables which are resolved
in a caller at compile-time

I Advantages
I Application can be certain that all its libraries are present and

that they are the correct version.
I No dependency problem.
I In some cases, static linking can have performance gain.
I Allows the application to be contained in a single executable

file, simplifying distribution and installation.

Introduction to C CS 2022, Spring 2011, Lecture 12

Example

a.c

extern int shared;

int main()

{

int a = 100;

swap(&a, &shared);

}

b.c

int shared = 1;

void swap(int *a, int *b)

{

*a ^= *b ^= *a ^= *b;

}

$gcc -c a.c b.c

Introduction to C CS 2022, Spring 2011, Lecture 12

Example

a.c

extern int shared;

int main()

{

int a = 100;

swap(&a, &shared);

}

b.c

int shared = 1;

void swap(int *a, int *b)

{

*a ^= *b ^= *a ^= *b;

}

$gcc -c a.c b.c

Introduction to C CS 2022, Spring 2011, Lecture 12

Using ld

$ld a.o b.o -e main -o ab

I -e main: Use “main” as the main point of execution

I -o ab: output a file named “ab”

$objdump -h a.o

$objdump -h b.o

$objdump -h ab

Introduction to C CS 2022, Spring 2011, Lecture 12

Using ld

$ld a.o b.o -e main -o ab

I -e main: Use “main” as the main point of execution

I -o ab: output a file named “ab”

$objdump -h a.o

$objdump -h b.o

$objdump -h ab

Introduction to C CS 2022, Spring 2011, Lecture 12

Using ld

$ld a.o b.o -e main -o ab

I -e main: Use “main” as the main point of execution

I -o ab: output a file named “ab”

$objdump -h a.o

$objdump -h b.o

$objdump -h ab

Introduction to C CS 2022, Spring 2011, Lecture 12

Dynamic Linking

I Loading the subroutines of a library at load time or runtime
I Advantage

I Shared code. Only one copy of the code
I Can change library (for example, upgrade the latest library)

without recompiling the code

I But you need to set LD LIBRARY PATH manually.

Introduction to C CS 2022, Spring 2011, Lecture 12

Dynamic Linking

I Loading the subroutines of a library at load time or runtime
I Advantage

I Shared code. Only one copy of the code
I Can change library (for example, upgrade the latest library)

without recompiling the code

I But you need to set LD LIBRARY PATH manually.

Introduction to C CS 2022, Spring 2011, Lecture 12

Example

program1.c

#include "myprinting.h"

int main()

{

foobar(1);

return 0;

}

program2.c

#include "myprinting.h"

int main()

{

foobar(2);

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 12

Example

myprinting.c

#include <stdio.h>

void foobar(int i)

{

printf("Printing from lib.so %d\n", i);

}

myprinting.h

#ifndef __MYPRINTING_H

#define __MYPRINTING_H

void foobar(int i);

#endif

$gcc -fPIC -shared -o libmyprinting.so myprinting.c

Introduction to C CS 2022, Spring 2011, Lecture 12

Example

myprinting.c

#include <stdio.h>

void foobar(int i)

{

printf("Printing from lib.so %d\n", i);

}

myprinting.h

#ifndef __MYPRINTING_H

#define __MYPRINTING_H

void foobar(int i);

#endif

$gcc -fPIC -shared -o libmyprinting.so myprinting.c

Introduction to C CS 2022, Spring 2011, Lecture 12

What Happens?

I -shared: output a shared object

I -fPIC: output a platform-independent code

$gcc -o program1 program1.c ./libmyprinting.so

$gcc -o program2 program2.c ./libmyprinting.so

Introduction to C CS 2022, Spring 2011, Lecture 12

What Happens?

I -shared: output a shared object

I -fPIC: output a platform-independent code

$gcc -o program1 program1.c ./libmyprinting.so

$gcc -o program2 program2.c ./libmyprinting.so

Introduction to C CS 2022, Spring 2011, Lecture 12

More GCC Options

Makefile

CC:=gcc

OPTIONS:=-shared -fPIC -O3 -funroll-loops

INCLUDE_PATH:=-I./lib/imagelib -I./lib/matrix

LIB_PATH:=-L./lib

PROJECT_LIBS:=-limage.x64 -ljpeg -lgfortran

SRC_DIR:=src

DST_DIR:=bin

default:

$(CC) $(OPTIONS) $(INCLUDE_PATH) $(LIB_PATH) \

$(SRC_DIR)/*.c -o $(DST_DIR)/libmyproject.so $(PROJECT_LIBS)

Introduction to C CS 2022, Spring 2011, Lecture 12

