
Introduction to C
File and Variable-length Argument Lists

Instructor: Yin Lou

02/14/2011

Introduction to C CS 2022, Spring 2011, Lecture 10

Streams

I In many programming languages, input/output are done in
streams

I Data exists on the stream, you consume part of it and move
on

I Examples:
I stdout: standard output stream
I stderr: standard error output stream
I stdin: standard input stream
I files
I network sockets (network connections)

Introduction to C CS 2022, Spring 2011, Lecture 10

File I/O

I Before a file can be read or written, it has to be opened by
the library function fopen. fopen takes an external name like
data.txt, does some housekeeping and negotiation with the
operating system, and returns a pointer to be used in
subsequent reads or writes of the file.

I This pointer points to a structure FILE.

FILE *fp;

Introduction to C CS 2022, Spring 2011, Lecture 10

File I/O

I Before a file can be read or written, it has to be opened by
the library function fopen. fopen takes an external name like
data.txt, does some housekeeping and negotiation with the
operating system, and returns a pointer to be used in
subsequent reads or writes of the file.

I This pointer points to a structure FILE.

FILE *fp;

Introduction to C CS 2022, Spring 2011, Lecture 10

File I/O

I Before a file can be read or written, it has to be opened by
the library function fopen. fopen takes an external name like
data.txt, does some housekeeping and negotiation with the
operating system, and returns a pointer to be used in
subsequent reads or writes of the file.

I This pointer points to a structure FILE.

FILE *fp;

Introduction to C CS 2022, Spring 2011, Lecture 10

fopen

FILE *fopen(char *name, char *mode);

I fopen returns a pointer to a FILE.

I FILE is a type name. It is defined with a typedef.
I mode can be

I r - read
I w - write
I a - append
I a “b” can be appended to the mode string to work with binary

files. For example, “rb” means reading binary file.

Introduction to C CS 2022, Spring 2011, Lecture 10

Text Files - fprintf and fscanf

int fprintf(FILE *fp, char *format, ...);

int fscanf(FILE *fp, char *format, ...);

I Similar to printf and scanf.

Introduction to C CS 2022, Spring 2011, Lecture 10

Example

#include <stdio.h>

int main(int argc, char **argv)

{

FILE *fp;

int i, n;

float value;

fp = fopen(argv[1], "r");

fscanf(fp, "%d", &n);

for (i = 0; i < n; ++i)

{

fscanf(fp, "%f", &value);

printf("%f\n", value);

}

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 10

Binary Files - fread and fwrite

size_t fread(void *array, size_t size, size_t count, FILE *fp);

size_t fwrite(void *array, size_t size, size_t count, FILE *fp);

I array must be a pointer

I size - size of elements in this array

I count - number of elements in this array

Introduction to C CS 2022, Spring 2011, Lecture 10

Binary Files - fread and fwrite

size_t fread(void *array, size_t size, size_t count, FILE *fp);

size_t fwrite(void *array, size_t size, size_t count, FILE *fp);

I array must be a pointer

I size - size of elements in this array

I count - number of elements in this array

Introduction to C CS 2022, Spring 2011, Lecture 10

Example

#include <stdio.h>

int main(int argc, char **argv)

{

FILE *fp;

int i, n;

float value[3];

fp = fopen(argv[1], "rb");

fread(&n, sizeof(int), 1, fp);

for (i = 0; i < n; ++i)

{

fread(value, sizeof(float), 3, fp);

printf("%f\t%f\t%f\n", value[0], value[1], value[2]);

}

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 10

Variable-length Argument Lists

I Let’s implement a minimal version of printf.

I Use “...” to indicate that the number and types of these
arguments may vary.

I The declaration “...” can only appear at the end of an
argument list.

void minprintf(char *format, ...)

Introduction to C CS 2022, Spring 2011, Lecture 10

Variable-length Argument Lists

I Let’s implement a minimal version of printf.

I Use “...” to indicate that the number and types of these
arguments may vary.

I The declaration “...” can only appear at the end of an
argument list.

void minprintf(char *format, ...)

Introduction to C CS 2022, Spring 2011, Lecture 10

What Do We Need?

I type va list - declare a variable that will refer to each
argument in turn, assume ap

I macro va start - initialize ap to point to the first unnamed
argument

I function va arg - Each call of va arg returns one argument
and steps ap to the next; va arg uses a type name to
determine what type to return and how big a step to take.

I function va end - do whatever cleanup is necessary. It must be
called before the program returns.

Introduction to C CS 2022, Spring 2011, Lecture 10

Implementation

#include <stdarg.h>

void minprintf(char *format, ...) {

va_list ap; // points to each unnamed arg in turn

char *p, *sval;

int ival;

va_start(ap, format); // make ap point to 1st unnamed arg

for (p = format; *p; ++p) {

if (*p != ’%’) {

putchar(*p);

continue;

}

switch (*++p) {

case ’d’:

ival = va_arg(ap, int);

printf("%d", ival);

break;

case ’s’:

for (sval = va_arg(ap, char *); *sval; ++sval) {

putchar(*sval);

}

break;

default:

putchar(*p);

}

}

va_end(ap); // clean up when done

}

Introduction to C CS 2022, Spring 2011, Lecture 10

