
Introduction to C
Standard Input and Output

Instructor: Yin Lou

02/11/2011

Introduction to C CS 2022, Spring 2011, Lecture 9



stdio.h

I Each source file that refers to an input/output library function
must contain the line

I #include <stdio.h>

I When the name is bracketed by < and > a search is made for
the header in a standard set of places

I On Unix systems, typically in the directory /usr/include

Introduction to C CS 2022, Spring 2011, Lecture 9



stdio.h

I Each source file that refers to an input/output library function
must contain the line

I #include <stdio.h>

I When the name is bracketed by < and > a search is made for
the header in a standard set of places

I On Unix systems, typically in the directory /usr/include

Introduction to C CS 2022, Spring 2011, Lecture 9



Example

#include <stdio.h>

#include <ctype.h>

int main()

{

int c;

while ((c = getchar()) != EOF)

{

putchar(tolower(c));

}

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 9



Formatted Output - printf

int printf(char *format, arg1, arg2, ...);

I printf converts, formats, and prints its arguments on the
standard output under control of the format.

I It returns the number of characters printed.

I printf(”x = %d, y = %d\n”, x, y);

Introduction to C CS 2022, Spring 2011, Lecture 9



Formatted Output - printf

int printf(char *format, arg1, arg2, ...);

I printf converts, formats, and prints its arguments on the
standard output under control of the format.

I It returns the number of characters printed.

I printf(”x = %d, y = %d\n”, x, y);

Introduction to C CS 2022, Spring 2011, Lecture 9



Basic printf Conversions

I d, i
int; decimal number

I o
int; unsigned octal number (without a leading zero)

I x, X
int; unsigned hexadecimal number (without a leading 0x or 0X), using
abcdef or ABCDEF for 10,...,15

I u
int; unsigned decimal number

I c
int; single character

I s
char *; print characters from the string until a ’\0’ or the number of
characters given by the precision.

I f
double; [-]m.dddddd , where the number of d ’s is given by the precision
(default 6).

Introduction to C CS 2022, Spring 2011, Lecture 9



What Can Go Wrong?

printf(s);

char *s = "My name is %s";

printf(s); // equivalent to printf("My name is %s");

printf("%s", s); // safe

Introduction to C CS 2022, Spring 2011, Lecture 9



What Can Go Wrong?

printf(s);

char *s = "My name is %s";

printf(s); // equivalent to printf("My name is %s");

printf("%s", s); // safe

Introduction to C CS 2022, Spring 2011, Lecture 9



Print to String

int sprintf(char *string, char *format, arg1, arg2, ...);

I sprintf formats the arguments in arg1, arg2, etc., according to
format as before, but places the result in string instead of the
standard output

I string must be big enough to receive the result

I sprintf(s, ”x = %d, y = %d\n”, x, y);

Introduction to C CS 2022, Spring 2011, Lecture 9



Print to String

int sprintf(char *string, char *format, arg1, arg2, ...);

I sprintf formats the arguments in arg1, arg2, etc., according to
format as before, but places the result in string instead of the
standard output

I string must be big enough to receive the result

I sprintf(s, ”x = %d, y = %d\n”, x, y);

Introduction to C CS 2022, Spring 2011, Lecture 9



Formatted Input - scanf

int scanf(char *format, ...);

I scanf reads characters from the standard input, interprets
them according to the specification in format, and stores the
results through the remaining arguments.

I Each of the other argument must be a pointer
I It returns as its value the number of successfully matched and

assigned input items. On the end of file, EOF is returned.
Note that this is different from 0, which means that the next
input character does not match the first specification in the
format string.

I The next call to scanf resumes searching immediately after
the last character already converted.

I scanf(”%d”, &x);
I scanf(”%s”, name); // char name[1000];

Introduction to C CS 2022, Spring 2011, Lecture 9



Formatted Input - scanf

int scanf(char *format, ...);

I scanf reads characters from the standard input, interprets
them according to the specification in format, and stores the
results through the remaining arguments.

I Each of the other argument must be a pointer

I It returns as its value the number of successfully matched and
assigned input items. On the end of file, EOF is returned.
Note that this is different from 0, which means that the next
input character does not match the first specification in the
format string.

I The next call to scanf resumes searching immediately after
the last character already converted.

I scanf(”%d”, &x);
I scanf(”%s”, name); // char name[1000];

Introduction to C CS 2022, Spring 2011, Lecture 9



Formatted Input - scanf

int scanf(char *format, ...);

I scanf reads characters from the standard input, interprets
them according to the specification in format, and stores the
results through the remaining arguments.

I Each of the other argument must be a pointer
I It returns as its value the number of successfully matched and

assigned input items. On the end of file, EOF is returned.
Note that this is different from 0, which means that the next
input character does not match the first specification in the
format string.

I The next call to scanf resumes searching immediately after
the last character already converted.

I scanf(”%d”, &x);
I scanf(”%s”, name); // char name[1000];

Introduction to C CS 2022, Spring 2011, Lecture 9



Read from a String

int sscanf(char *string, char *format, arg1, arg2, ...);

The formate string main contain

I Blank or tabs, which are not ignored

I Ordinary characters

I Conversion specifications

I sscanf(”x = 5, y = 6”, ”x = %d, y = %d”, &x, &y);

Introduction to C CS 2022, Spring 2011, Lecture 9



Read from a String

int sscanf(char *string, char *format, arg1, arg2, ...);

The formate string main contain

I Blank or tabs, which are not ignored

I Ordinary characters

I Conversion specifications

I sscanf(”x = 5, y = 6”, ”x = %d, y = %d”, &x, &y);

Introduction to C CS 2022, Spring 2011, Lecture 9



Example

#include <stdio.h>

int main()

{

double sum, v;

while (scanf("%lf", &v) == 1)

{

printf("\t%.2f\n", sum += v);

}

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 9



Error Handling - stderr and exit

I There is a second output stream, called stderr.

I Output written on stderr normally appears on the screen even
if the standard output is redirected.

I exit(int signal) is function to terminate the program, with a
signal specified. 0 signals that all is well; non-zero values
usually signal abnormal situations

#include <stdio.h>

#include <stdlib.h>

main()

{

char *p = (char *) malloc(50 * sizeof(char));

if (p == NULL)

{

fprintf(stderr, "Not enough memory!\n");

exit(1);

}

// do something

exit(0);

}

Introduction to C CS 2022, Spring 2011, Lecture 9



Error Handling - stderr and exit

I There is a second output stream, called stderr.

I Output written on stderr normally appears on the screen even
if the standard output is redirected.

I exit(int signal) is function to terminate the program, with a
signal specified. 0 signals that all is well; non-zero values
usually signal abnormal situations

#include <stdio.h>

#include <stdlib.h>

main()

{

char *p = (char *) malloc(50 * sizeof(char));

if (p == NULL)

{

fprintf(stderr, "Not enough memory!\n");

exit(1);

}

// do something

exit(0);

}

Introduction to C CS 2022, Spring 2011, Lecture 9


