
Introduction to C
Performance

Instructor: Yin Lou

02/07/2011

Introduction to C CS 2022, Spring 2011, Lecture 7

Optimizing

I When speed really matters, C is the language to use
I Can be 10-100x faster than Java or Matlab

I But writing something in C doesn’t guarantee speed
I It’s up to you to write efficient code

I There are two general strategies for optimization
I Use a better algorithm or different data structures
I Write code that implements the algorithm more efficiently

Introduction to C CS 2022, Spring 2011, Lecture 7

Optimizing

I When speed really matters, C is the language to use
I Can be 10-100x faster than Java or Matlab

I But writing something in C doesn’t guarantee speed
I It’s up to you to write efficient code

I There are two general strategies for optimization
I Use a better algorithm or different data structures
I Write code that implements the algorithm more efficiently

Introduction to C CS 2022, Spring 2011, Lecture 7

Optimizing

I When speed really matters, C is the language to use
I Can be 10-100x faster than Java or Matlab

I But writing something in C doesn’t guarantee speed
I It’s up to you to write efficient code

I There are two general strategies for optimization
I Use a better algorithm or different data structures
I Write code that implements the algorithm more efficiently

Introduction to C CS 2022, Spring 2011, Lecture 7

Bitwise Operations

a = 0x00FF

b = 0xF000

a & b = 0x0000 // bitwise and

a | b = 0xF0FF // bitwise or

~a = 0xFF00 // bitwise not

a ^ b = 0xF0FF // bitwise xor

a << 4 = 0x0FF0 // left shift by 4 bits

a >> 4 = 0x000F // right shift by 4 bits

Introduction to C CS 2022, Spring 2011, Lecture 7

Right Shift

I Arithmetic right shift: Copy the left most bit

I Logical right shift: Place 0s in the left

Example

int a = 0xF000;

a >> 4 = 0xFF00 // Arithmetic right shift

a >> 4 = 0x0F00 // Logical right shift

Unfortunately, for signed data, there’s no standard which one to
use, but for almost all machines, arithmetic right shift is used.

Introduction to C CS 2022, Spring 2011, Lecture 7

Right Shift

I Arithmetic right shift: Copy the left most bit

I Logical right shift: Place 0s in the left

Example

int a = 0xF000;

a >> 4 = 0xFF00 // Arithmetic right shift

a >> 4 = 0x0F00 // Logical right shift

Unfortunately, for signed data, there’s no standard which one to
use, but for almost all machines, arithmetic right shift is used.

Introduction to C CS 2022, Spring 2011, Lecture 7

Right Shift

I Arithmetic right shift: Copy the left most bit

I Logical right shift: Place 0s in the left

Example

int a = 0xF000;

a >> 4 = 0xFF00 // Arithmetic right shift

a >> 4 = 0x0F00 // Logical right shift

Unfortunately, for signed data, there’s no standard which one to
use, but for almost all machines, arithmetic right shift is used.

Introduction to C CS 2022, Spring 2011, Lecture 7

Don’t Get Confused!

x = 0x66, y = 0x93

x & y = 0x02 x && y = 0x01

x | y = 0xF7 x || y = 0x01

~x | ~y = 0xFD !x || !y = 0x00

x & !y = 0x00 x && ~y = 0x01

Introduction to C CS 2022, Spring 2011, Lecture 7

Bitwise Operations

I Bitwise operations are fast.

I x * 256 ⇔ x << 8
I x % 256 ⇔ ?

Introduction to C CS 2022, Spring 2011, Lecture 7

Bitwise Operations

I Bitwise operations are fast.
I x * 256 ⇔ x << 8
I x % 256 ⇔ ?

Introduction to C CS 2022, Spring 2011, Lecture 7

Struct and Union

struct node

{

struct node *left;

struct node *right;

double data; // only leaf node has data

};

Each node needs 16 bytes, but almost half of them are wasted.

union node

{

struct

{

union node *left;

union node *right;

} internal;

double data;

};

Introduction to C CS 2022, Spring 2011, Lecture 7

Struct and Union

struct node

{

struct node *left;

struct node *right;

double data; // only leaf node has data

};

Each node needs 16 bytes, but almost half of them are wasted.

union node

{

struct

{

union node *left;

union node *right;

} internal;

double data;

};

Introduction to C CS 2022, Spring 2011, Lecture 7

Struct and Union

But now we have no way to tell which node is leaf.

struct node

{

int is_leaf;

union

{

struct

{

union node *left;

union node *right;

} internal;

double data;

} info;

};

Now each node only needs 12 bytes.

Introduction to C CS 2022, Spring 2011, Lecture 7

Struct and Union

But now we have no way to tell which node is leaf.

struct node

{

int is_leaf;

union

{

struct

{

union node *left;

union node *right;

} internal;

double data;

} info;

};

Now each node only needs 12 bytes.

Introduction to C CS 2022, Spring 2011, Lecture 7

Inefficient Loop

void to_lower(char *s)

{

int i;

for (i = 0; i < strlen(s); ++i)

{

if (’A’ <= s[i] && s[i] <= ’Z’)

{

s[i] -= (’A’ - ’a’);

}

}

}

strlen(s) will be computed for each run of the loop. The function
seems to be O(n) but it is actually O(n2).

Introduction to C CS 2022, Spring 2011, Lecture 7

Inefficient Loop

void to_lower(char *s)

{

int i;

for (i = 0; i < strlen(s); ++i)

{

if (’A’ <= s[i] && s[i] <= ’Z’)

{

s[i] -= (’A’ - ’a’);

}

}

}

strlen(s) will be computed for each run of the loop. The function
seems to be O(n) but it is actually O(n2).

Introduction to C CS 2022, Spring 2011, Lecture 7

Code Motion

void to_lower(char *s)

{

int i;

int len = strlen(s);

for (i = 0; i < len; ++i)

{

if (’A’ <= s[i] && s[i] <= ’Z’)

{

s[i] -= (’A’ - ’a’);

}

}

}

Introduction to C CS 2022, Spring 2011, Lecture 7

Cache

I A subset of data in main memory

I Faster access than main memory

I You can view main memory as a cache to the hard disk

Introduction to C CS 2022, Spring 2011, Lecture 7

Cache-friendly Code

Comparing these two codes

// cache-friendly

int i, j;

for (i = 0; i < 10; ++i)

{

for (j = 0; j < 20; ++j)

{

a[i][j] += 10;

}

}

// not cache-friendly

int i, j;

for (j = 0; j < 20; ++j)

{

for (i = 0; i < 10; ++i)

{

a[i][j] += 10;

}

}

Introduction to C CS 2022, Spring 2011, Lecture 7

