
Introduction to C
Pointers and Arrays

Instructor: Yin Lou

01/31/2011

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers

I A pointer is a variable that contains the address of a variable
I Pointers are powerful but dangerous as well

I Sometimes pointers are the only way to express the
computation

I Points usually lead to more compact and efficient code
I But the programmer must be extremely careful

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers

I A pointer is a variable that contains the address of a variable
I Pointers are powerful but dangerous as well

I Sometimes pointers are the only way to express the
computation

I Points usually lead to more compact and efficient code
I But the programmer must be extremely careful

Introduction to C CS 2022, Spring 2011, Lecture 4

Memory

I Variables are stored in memory
I Think of memory as a very large array

I Every location in memory has an address
I An address is an integer, just like an array index

I In C, a memory address is called a pointer
I C lets you access memory locations directly

Introduction to C CS 2022, Spring 2011, Lecture 4

Two Operators

I & (“address of”) operator
I Returns the address of its argument
I Said another way: returns a pointer to its argument
I The argument must be a variable name.

I * (“dereference”) operator
I Returns the value stored at a given memory address
I The argument must be a pointer

Introduction to C CS 2022, Spring 2011, Lecture 4

Declaration

int i; // Integer i

int *p; // Pointer to integer

int **m; // Pointer to int pointer

p = &i; // p now points to i

printf("%p", p); // Prints the address of i (in p)

m = &p; // m now points to p

printf("%p", m); // Prints the address of p (in m)

Introduction to C CS 2022, Spring 2011, Lecture 4

Example

int a = 0;

int b = 0;

int *p;

a = 10;

p = &a;

*p = 20; // a = ? b = ?

p = &b;

*p = 10; // a = ? b = ?

a = *p; // a = ? b = ?

Introduction to C CS 2022, Spring 2011, Lecture 4

Passing Pointers to Functions

void swap(int *a, int *b)

{

int t = *a;

*a = *b;

*b = t;

}

void main()

{

int a = 5, b = 3;

printf("Before swap: a = %d b = %d\n", a, b);

swap(&a, &b);

printf("After swap: a = %d b = %d\n", a, b);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Multiple Return Values

void initialize(int *a, char *b)

{

*a = 10;

*b = ’x’;

}

void main()

{

int a, b;

initialize(&a, &b);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers Are Dangerous

What does this code do?

void main()

{

char *x;

*x = ’a’;

}

What about this code?

void main()

{

char x = ’a’;

char *p = &x;

p++;

printf("%c\n", *p);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers Are Dangerous

What does this code do?

void main()

{

char *x;

*x = ’a’;

}

What about this code?

void main()

{

char x = ’a’;

char *p = &x;

p++;

printf("%c\n", *p);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I To declare an array, use [], e.g:

I int a[5]; // Creates an array with 5 integer

elements

I The size of an array can’t be changed

I The number between the brackets must be a constant
I You can give initial values for array elements, e.g:

I int a[5] = {3, 7, -1, 4, 6};
I A better way: int a[] = {3, 7, -1, 4, 6}; // Let the compiler

calculate the size

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I To declare an array, use [], e.g:
I int a[5]; // Creates an array with 5 integer

elements

I The size of an array can’t be changed

I The number between the brackets must be a constant
I You can give initial values for array elements, e.g:

I int a[5] = {3, 7, -1, 4, 6};
I A better way: int a[] = {3, 7, -1, 4, 6}; // Let the compiler

calculate the size

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I To declare an array, use [], e.g:
I int a[5]; // Creates an array with 5 integer

elements

I The size of an array can’t be changed

I The number between the brackets must be a constant

I You can give initial values for array elements, e.g:
I int a[5] = {3, 7, -1, 4, 6};
I A better way: int a[] = {3, 7, -1, 4, 6}; // Let the compiler

calculate the size

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I To declare an array, use [], e.g:
I int a[5]; // Creates an array with 5 integer

elements

I The size of an array can’t be changed

I The number between the brackets must be a constant
I You can give initial values for array elements, e.g:

I int a[5] = {3, 7, -1, 4, 6};
I A better way: int a[] = {3, 7, -1, 4, 6}; // Let the compiler

calculate the size

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I To declare an array, use [], e.g:
I int a[5]; // Creates an array with 5 integer

elements

I The size of an array can’t be changed

I The number between the brackets must be a constant
I You can give initial values for array elements, e.g:

I int a[5] = {3, 7, -1, 4, 6};

I A better way: int a[] = {3, 7, -1, 4, 6}; // Let the compiler
calculate the size

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I To declare an array, use [], e.g:
I int a[5]; // Creates an array with 5 integer

elements

I The size of an array can’t be changed

I The number between the brackets must be a constant
I You can give initial values for array elements, e.g:

I int a[5] = {3, 7, -1, 4, 6};
I A better way: int a[] = {3, 7, -1, 4, 6}; // Let the compiler

calculate the size

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I Array indices in C are zero-based, e.g. a[0], a[1], ..., a[4]

Example

void main()

{

int a[] = {3, 7, -1, 4, 6};

int i;

double mean = 0;

// compute mean of values in a

for (i = 0; i < 5; ++i)

{

mean += a[0];

}

mean /= 5;

printf("Mean = %.2f\n", mean);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Arrays

I Array indices in C are zero-based, e.g. a[0], a[1], ..., a[4]

Example

void main()

{

int a[] = {3, 7, -1, 4, 6};

int i;

double mean = 0;

// compute mean of values in a

for (i = 0; i < 5; ++i)

{

mean += a[0];

}

mean /= 5;

printf("Mean = %.2f\n", mean);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I Pointers and arrays are closely related

I An array variable is actually just a pointer to the first element
in the array

I You can access array elements using array notation or pointers
I a[0] is the same as *a
I a[1] is the same as *(a + 1)
I a[2] is the same as *(a + 2)

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I Pointers and arrays are closely related
I An array variable is actually just a pointer to the first element

in the array

I You can access array elements using array notation or pointers
I a[0] is the same as *a
I a[1] is the same as *(a + 1)
I a[2] is the same as *(a + 2)

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I Pointers and arrays are closely related
I An array variable is actually just a pointer to the first element

in the array

I You can access array elements using array notation or pointers

I a[0] is the same as *a
I a[1] is the same as *(a + 1)
I a[2] is the same as *(a + 2)

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I Pointers and arrays are closely related
I An array variable is actually just a pointer to the first element

in the array

I You can access array elements using array notation or pointers
I a[0] is the same as *a
I a[1] is the same as *(a + 1)
I a[2] is the same as *(a + 2)

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I Accessing array elements using pointers

Example

void main()

{

int a[] = {3, 7, -1, 4, 6};

int i;

double mean = 0;

// compute mean of values in a

for (i = 0; i < 5; ++i)

{

mean += *(a + i)

}

mean /= 5;

printf("Mean = %.2f\n", mean);

}

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I If pa points to a particular element of an array, (pa + 1)
always points to the next element, (pa + i) points i elements
after pa and (pa - i) points i elements before.

I The only difference between an array name and a pointer:
I A pointer is a variable, so pa = a and pa++ is legal
I An array name is not a variable, so a = pa and a++ is illegal

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers and Arrays

I If pa points to a particular element of an array, (pa + 1)
always points to the next element, (pa + i) points i elements
after pa and (pa - i) points i elements before.

I The only difference between an array name and a pointer:
I A pointer is a variable, so pa = a and pa++ is legal
I An array name is not a variable, so a = pa and a++ is illegal

Introduction to C CS 2022, Spring 2011, Lecture 4

Strings

I There is no string type in C!

I Instead, strings are implemented as arrays of characters: char
* or char []

I Enclosed in double-quotes

I Terminated by NULL character (’\0’)

I ”Hello”

I printf format: %s

I same as
char str[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’}

Introduction to C CS 2022, Spring 2011, Lecture 4

Strings

I There is no string type in C!

I Instead, strings are implemented as arrays of characters: char
* or char []

I Enclosed in double-quotes

I Terminated by NULL character (’\0’)

I ”Hello”

I printf format: %s

I same as
char str[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’}

Introduction to C CS 2022, Spring 2011, Lecture 4

Strings

I There is no string type in C!

I Instead, strings are implemented as arrays of characters: char
* or char []

I Enclosed in double-quotes

I Terminated by NULL character (’\0’)

I ”Hello”

I printf format: %s

I same as
char str[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’}

Introduction to C CS 2022, Spring 2011, Lecture 4

Built-in String Functions

I string.h has functions for manipulating null-terminated strings,
e.g.

I strlen(char *s): returns length of s
I strcat(char *s1, char *s2): appends s2 to s1 (s1 must have

enough space!)
I strcpy(char *s1, char *s2): copies s2 into s1(Again, s1 must

have enough space!)
I strcmp(char *s1, char *s2): compares s1 and s2

Introduction to C CS 2022, Spring 2011, Lecture 4

Built-in String Functions

I string.h has functions for manipulating null-terminated strings,
e.g.

I strlen(char *s): returns length of s
I strcat(char *s1, char *s2): appends s2 to s1 (s1 must have

enough space!)
I strcpy(char *s1, char *s2): copies s2 into s1(Again, s1 must

have enough space!)
I strcmp(char *s1, char *s2): compares s1 and s2

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers, Arrays and Functions

I It’s possible to pass part of an array to a function, by pass a
pointer to the beginning of the subarray.

I f(&a[2])
I f(a + 2)

I Within f, the parameter declaration can read
I f(int arr[]) { ... }
I f(int *arr) { ... }

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers, Arrays and Functions

I It’s possible to pass part of an array to a function, by pass a
pointer to the beginning of the subarray.

I f(&a[2])
I f(a + 2)

I Within f, the parameter declaration can read
I f(int arr[]) { ... }
I f(int *arr) { ... }

Introduction to C CS 2022, Spring 2011, Lecture 4

Pointers, Arrays and Functions

I It’s possible to pass part of an array to a function, by pass a
pointer to the beginning of the subarray.

I f(&a[2])
I f(a + 2)

I Within f, the parameter declaration can read
I f(int arr[]) { ... }
I f(int *arr) { ... }

Introduction to C CS 2022, Spring 2011, Lecture 4

Example

int strlen(char *s)

{

int n = 0;

while (*s != ’\0’)

{

s++;

n++;

}

return n;

}

char *p = "hello, world";

strlen(p);

strlen(p + 7);

Introduction to C CS 2022, Spring 2011, Lecture 4

Dynamically Allocating Arrays

I malloc: Allocate contiguous memory dynamically
I int *p = (int *) malloc(n * sizeof(int));
I An array of size n

I free: Deallocate the memory
I free(p);

I Make sure malloc and free are paired!

Introduction to C CS 2022, Spring 2011, Lecture 4

Dynamically Allocating Arrays

I malloc: Allocate contiguous memory dynamically

I int *p = (int *) malloc(n * sizeof(int));
I An array of size n

I free: Deallocate the memory
I free(p);

I Make sure malloc and free are paired!

Introduction to C CS 2022, Spring 2011, Lecture 4

Dynamically Allocating Arrays

I malloc: Allocate contiguous memory dynamically
I int *p = (int *) malloc(n * sizeof(int));
I An array of size n

I free: Deallocate the memory
I free(p);

I Make sure malloc and free are paired!

Introduction to C CS 2022, Spring 2011, Lecture 4

Dynamically Allocating Arrays

I malloc: Allocate contiguous memory dynamically
I int *p = (int *) malloc(n * sizeof(int));
I An array of size n

I free: Deallocate the memory

I free(p);

I Make sure malloc and free are paired!

Introduction to C CS 2022, Spring 2011, Lecture 4

Dynamically Allocating Arrays

I malloc: Allocate contiguous memory dynamically
I int *p = (int *) malloc(n * sizeof(int));
I An array of size n

I free: Deallocate the memory
I free(p);

I Make sure malloc and free are paired!

Introduction to C CS 2022, Spring 2011, Lecture 4

Dynamically Allocating Arrays

I malloc: Allocate contiguous memory dynamically
I int *p = (int *) malloc(n * sizeof(int));
I An array of size n

I free: Deallocate the memory
I free(p);

I Make sure malloc and free are paired!

Introduction to C CS 2022, Spring 2011, Lecture 4

