
Introduction to C
Functions and Make

Instructor: Yin Lou

01/28/2011

Introduction to C CS 2022, Spring 2011, Lecture 3



Math Functions

I Many math functions are defined in math.h

I pow(a, b) - Compute ab

I exp(a) - Compute ea

I log(a) - Compute natural logarithm
I log10(a) - Compute common logarithm
I sqrt(a) - Compute square root
I fabs(a) - Compute absolute value
I ceil/floor - Round up/down value
I cos, sin, tan
I acos, asin, atan

Introduction to C CS 2022, Spring 2011, Lecture 3



Math Functions

I Many math functions are defined in math.h
I pow(a, b) - Compute ab

I exp(a) - Compute ea

I log(a) - Compute natural logarithm
I log10(a) - Compute common logarithm
I sqrt(a) - Compute square root
I fabs(a) - Compute absolute value
I ceil/floor - Round up/down value
I cos, sin, tan
I acos, asin, atan

Introduction to C CS 2022, Spring 2011, Lecture 3



Functions

I Purpose of functions

I Breaks a program into pieces that are easier to understand
I Makes recursive algorithms easier to implement
I Promotes code reuse

I Disadvantage of functions
I Function calls add some memory and time overhead

I Functions in C
I Similar to methods in Java
I But C functions do not belong to a class. Every function is

visible everywhere in the program.

Introduction to C CS 2022, Spring 2011, Lecture 3



Functions

I Purpose of functions
I Breaks a program into pieces that are easier to understand
I Makes recursive algorithms easier to implement
I Promotes code reuse

I Disadvantage of functions
I Function calls add some memory and time overhead

I Functions in C
I Similar to methods in Java
I But C functions do not belong to a class. Every function is

visible everywhere in the program.

Introduction to C CS 2022, Spring 2011, Lecture 3



Functions

I Purpose of functions
I Breaks a program into pieces that are easier to understand
I Makes recursive algorithms easier to implement
I Promotes code reuse

I Disadvantage of functions

I Function calls add some memory and time overhead

I Functions in C
I Similar to methods in Java
I But C functions do not belong to a class. Every function is

visible everywhere in the program.

Introduction to C CS 2022, Spring 2011, Lecture 3



Functions

I Purpose of functions
I Breaks a program into pieces that are easier to understand
I Makes recursive algorithms easier to implement
I Promotes code reuse

I Disadvantage of functions
I Function calls add some memory and time overhead

I Functions in C
I Similar to methods in Java
I But C functions do not belong to a class. Every function is

visible everywhere in the program.

Introduction to C CS 2022, Spring 2011, Lecture 3



Functions

I Purpose of functions
I Breaks a program into pieces that are easier to understand
I Makes recursive algorithms easier to implement
I Promotes code reuse

I Disadvantage of functions
I Function calls add some memory and time overhead

I Functions in C

I Similar to methods in Java
I But C functions do not belong to a class. Every function is

visible everywhere in the program.

Introduction to C CS 2022, Spring 2011, Lecture 3



Functions

I Purpose of functions
I Breaks a program into pieces that are easier to understand
I Makes recursive algorithms easier to implement
I Promotes code reuse

I Disadvantage of functions
I Function calls add some memory and time overhead

I Functions in C
I Similar to methods in Java
I But C functions do not belong to a class. Every function is

visible everywhere in the program.

Introduction to C CS 2022, Spring 2011, Lecture 3



A Simple Function

Compute baseexp

int power(int base, int exp)

{

int i, p = 1;

for (i = 1; i <= exp; ++i)

{

p *= base;

}

return p;

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Simple Function in Context

#include <stdio.h>

int power(int base, int exp); // function prototype

void main() // function definition

{

int i = 3, j = 4;

// function call

printf("%d^%d is %d.\n", i, j, power(i, j));

}

int power(int base, int exp) // function definition

{

int i, p = 1;

for (i = 1; i <= exp; ++i)

{

p *= base;

}

return p;

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Function Return Values

I If a function returns type void, then no return statement is
needed.

I If a function returns another type, then a return statement is
required along all possible execution paths.

What does this code do?

#include <stdio.h>

int foo(int arg)

{

if (arg == 1)

{

return 1;

}

}

void main()

{

printf("%d\n", foo(0));

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Function Return Values

I If a function returns type void, then no return statement is
needed.

I If a function returns another type, then a return statement is
required along all possible execution paths.

What does this code do?

#include <stdio.h>

int foo(int arg)

{

if (arg == 1)

{

return 1;

}

}

void main()

{

printf("%d\n", foo(0));

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Function arguments in C are passed by value

I The value of the argument is passed, not a reference
I Functions are given a new copy of their arguments
I So a function can’t modify the value of a variable in the calling

function (unless you use pointers)

Example

#include <stdio.h>

int foo(int a)

{

a = 3;

return a;

}

void main()

{

int a = 1, b;

b = foo(a);

printf("%d %d\n", a, b); // Output 1 3

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Function arguments in C are passed by value
I The value of the argument is passed, not a reference
I Functions are given a new copy of their arguments
I So a function can’t modify the value of a variable in the calling

function (unless you use pointers)

Example

#include <stdio.h>

int foo(int a)

{

a = 3;

return a;

}

void main()

{

int a = 1, b;

b = foo(a);

printf("%d %d\n", a, b); // Output 1 3

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Function arguments in C are passed by value
I The value of the argument is passed, not a reference
I Functions are given a new copy of their arguments
I So a function can’t modify the value of a variable in the calling

function (unless you use pointers)

Example

#include <stdio.h>

int foo(int a)

{

a = 3;

return a;

}

void main()

{

int a = 1, b;

b = foo(a);

printf("%d %d\n", a, b); // Output 1 3

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

Example

#include <stdio.h>

void swap(int a, int b)

{

int t = a;

a = b;

b = t;

}

void main()

{

int a = 1, b = 2;

swap(a, b);

printf("%d %d\n", a, b); // Output 1 2

}

1 2 Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Call by value has advantages and disadvantages

I Advantage: some functions are easier to write

int power(int base, int exp)

{

int result = 1;

for (; exp >= 1; --exp)

{

result *= base;

}

return result;

}

I Disadvantage: sometimes youd like to modify an argument
(e.g. swap() function)

I Well see how to do this using pointers later

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Call by value has advantages and disadvantages
I Advantage: some functions are easier to write

int power(int base, int exp)

{

int result = 1;

for (; exp >= 1; --exp)

{

result *= base;

}

return result;

}

I Disadvantage: sometimes youd like to modify an argument
(e.g. swap() function)

I Well see how to do this using pointers later

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Call by value has advantages and disadvantages
I Advantage: some functions are easier to write

int power(int base, int exp)

{

int result = 1;

for (; exp >= 1; --exp)

{

result *= base;

}

return result;

}

I Disadvantage: sometimes youd like to modify an argument
(e.g. swap() function)

I Well see how to do this using pointers later

Introduction to C CS 2022, Spring 2011, Lecture 3



Call by Value

I Call by value has advantages and disadvantages
I Advantage: some functions are easier to write

int power(int base, int exp)

{

int result = 1;

for (; exp >= 1; --exp)

{

result *= base;

}

return result;

}

I Disadvantage: sometimes youd like to modify an argument
(e.g. swap() function)

I Well see how to do this using pointers later

Introduction to C CS 2022, Spring 2011, Lecture 3



Recursion

Example

int fact(int n)

{

if (n == 0)

{

return 1;

}

else

{

return n * fact(n - 1);

}

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Declaration and Definition

Declaration

A declaration announces the properties of a variable (primarily its
type).

Example:
extern int n;
extern double val[];

Definition

A definition also causes storage to be set aside.

Example:
int n;
double val[MAX LEN];

Introduction to C CS 2022, Spring 2011, Lecture 3



Manage Your Project

I It’s always recommended to modularize your project. How?

I Write functions and paste them in new file?

I Definitions and decelerations are shared among a lot of source
files. How to centralize this, so that there is only one copy to
get and keep right as the program evolves?

I We could use header files.

Introduction to C CS 2022, Spring 2011, Lecture 3



Manage Your Project

I It’s always recommended to modularize your project. How?

I Write functions and paste them in new file?

I Definitions and decelerations are shared among a lot of source
files. How to centralize this, so that there is only one copy to
get and keep right as the program evolves?

I We could use header files.

Introduction to C CS 2022, Spring 2011, Lecture 3



Manage Your Project

I It’s always recommended to modularize your project. How?

I Write functions and paste them in new file?

I Definitions and decelerations are shared among a lot of source
files. How to centralize this, so that there is only one copy to
get and keep right as the program evolves?

I We could use header files.

Introduction to C CS 2022, Spring 2011, Lecture 3



Manage Your Project

I It’s always recommended to modularize your project. How?

I Write functions and paste them in new file?

I Definitions and decelerations are shared among a lot of source
files. How to centralize this, so that there is only one copy to
get and keep right as the program evolves?

I We could use header files.

Introduction to C CS 2022, Spring 2011, Lecture 3



Header File

I Place common material in a header file.

I Can be included as necessary.

Example: mymath.h

int fact(int n);

int power(int base, int exp);

Introduction to C CS 2022, Spring 2011, Lecture 3



Header File

I Place common material in a header file.

I Can be included as necessary.

Example: mymath.h

int fact(int n);

int power(int base, int exp);

Introduction to C CS 2022, Spring 2011, Lecture 3



Example

power.c

#include "mymath.h"

int power(int base, int exp)

{

int result = 1;

int i;

for (i = 1; i <= exp; ++i)

{

result *= base;

}

return result;

}

fact.c

#include "mymath.h"

int fact(int n)

{

if (n == 0)

{

return 1;

}

else

{

return n * fact(n - 1);

}

}

Introduction to C CS 2022, Spring 2011, Lecture 3



Example

main.c

#include <stdio.h>

#include "mymath.h"

void main()

{

printf("%d\n", power(5, 3));

printf("%d\n", fact(5));

}

Introduction to C CS 2022, Spring 2011, Lecture 3



How to Compile

$ gcc -O main.c fact.c power.c -o test

$ ./test

125

120

Introduction to C CS 2022, Spring 2011, Lecture 3



Introduction to make

I Large projects have complex dependencies.

I There is a UNIX command called make that can help you
compile your project.

I You write a file named Makefile, which just sits in the same
directory as your project.

I Describes what source files are used to build which object
files, what headers they depend on, and so forth.

Makefile

defult:

gcc main.c fact.c power.c -o test

clean:

rm test

Introduction to C CS 2022, Spring 2011, Lecture 3



Introduction to make

I Large projects have complex dependencies.

I There is a UNIX command called make that can help you
compile your project.

I You write a file named Makefile, which just sits in the same
directory as your project.

I Describes what source files are used to build which object
files, what headers they depend on, and so forth.

Makefile

defult:

gcc main.c fact.c power.c -o test

clean:

rm test

Introduction to C CS 2022, Spring 2011, Lecture 3



Introduction to make

I Large projects have complex dependencies.

I There is a UNIX command called make that can help you
compile your project.

I You write a file named Makefile, which just sits in the same
directory as your project.

I Describes what source files are used to build which object
files, what headers they depend on, and so forth.

Makefile

defult:

gcc main.c fact.c power.c -o test

clean:

rm test

Introduction to C CS 2022, Spring 2011, Lecture 3



Introduction to make

I Large projects have complex dependencies.

I There is a UNIX command called make that can help you
compile your project.

I You write a file named Makefile, which just sits in the same
directory as your project.

I Describes what source files are used to build which object
files, what headers they depend on, and so forth.

Makefile

defult:

gcc main.c fact.c power.c -o test

clean:

rm test

Introduction to C CS 2022, Spring 2011, Lecture 3



Introduction to make

I Large projects have complex dependencies.

I There is a UNIX command called make that can help you
compile your project.

I You write a file named Makefile, which just sits in the same
directory as your project.

I Describes what source files are used to build which object
files, what headers they depend on, and so forth.

Makefile

defult:

gcc main.c fact.c power.c -o test

clean:

rm test

Introduction to C CS 2022, Spring 2011, Lecture 3



Another Example

Makefile

CC:=gcc

OPTIONS:=-O2 -shared -fPIC

LIB_PATH:=-pthread

SRC_DIR:=src

DST_DIR:=bin

default:

$(CC) $(OPTIONS) $(LIB_PATH) \

$(SRC_DIR)/*.c -o $(DST_DIR)/libMath.so

clean:

cd $(DST_DIR); rm libMath.so

Introduction to C CS 2022, Spring 2011, Lecture 3


