
Introduction to C
Control Flow

Instructor: Yin Lou

01/26/2011

Introduction to C CS 2022, Spring 2011, Lecture 2

Statements

<statement> := <expression>;

x = 0;

++i;

printf("%d", x);

Introduction to C CS 2022, Spring 2011, Lecture 2

Statements

<statement> := <expression>;

x = 0;

++i;

printf("%d", x);

Introduction to C CS 2022, Spring 2011, Lecture 2

Blocks

<block> := {<statements>}

{

x = 0;

++i;

printf("%d", x);

}

I A block is syntactically equivalent to a single statement.
I if, else, while, for
I Variables can be declared inside any block.
I There is no semicolon after the right brace that ends a block.

Introduction to C CS 2022, Spring 2011, Lecture 2

Blocks

<block> := {<statements>}

{

x = 0;

++i;

printf("%d", x);

}

I A block is syntactically equivalent to a single statement.

I if, else, while, for
I Variables can be declared inside any block.
I There is no semicolon after the right brace that ends a block.

Introduction to C CS 2022, Spring 2011, Lecture 2

Blocks

<block> := {<statements>}

{

x = 0;

++i;

printf("%d", x);

}

I A block is syntactically equivalent to a single statement.
I if, else, while, for
I Variables can be declared inside any block.
I There is no semicolon after the right brace that ends a block.

Introduction to C CS 2022, Spring 2011, Lecture 2

Example

int x = 0;

{

int x = 5;

printf("Inside: x = %d\n", x);

}

printf("Outside: x = %d\n", x);

Inside: x = 5
Outside: x = 0

Introduction to C CS 2022, Spring 2011, Lecture 2

Example

int x = 0;

{

int x = 5;

printf("Inside: x = %d\n", x);

}

printf("Outside: x = %d\n", x);

Inside: x = 5
Outside: x = 0

Introduction to C CS 2022, Spring 2011, Lecture 2

if Statement

if (<condition>) <statement>

// single statment

if (2 < 5)

printf("2 is less than 5.\n");

// block

if (2 < 5)

{

printf("I’ll always print this line.\n");

printf("because 2 is always less than 5!\n");

}

Introduction to C CS 2022, Spring 2011, Lecture 2

if-else Statement

if (<condition>) <statement1> else <statement2>

if (x < 0)

{

printf("%d is negative.\n", x);

}

else

{

printf("%d is non-negative.\n", x);

}

Introduction to C CS 2022, Spring 2011, Lecture 2

else-if Statement

if (a < 5)

printf("a < 5\n");

else

{

if (a < 8)

printf("5 <= a < 8\n");

else

printf("a >= 8\n");

}

if (a < 5)

printf("a < 5\n");

else if (a < 8)

printf("5 <= a < 8\n");

else

printf("a >= 8\n");

Introduction to C CS 2022, Spring 2011, Lecture 2

if-else Statement Pitfalls

if (a > 70)

if (a > 80)

printf("grade = B\n");

else

printf("grade < B\n");

printf("Fail.\n");

printf("Done.\n");

if (a > 70)

{

if (a > 80)

{

printf("grade = B\n");

}

else

{

printf("grade < B\n");

}

}

printf("Fail.\n");

printf("Done.\n");

Introduction to C CS 2022, Spring 2011, Lecture 2

Relational Operators

C has the following relational operators

a == b true iff a equals b
a != b true iff a does not equal b
a < b true iff a is less than b
a > b true iff a is greater than b

a <= b true iff a is less than or equal to b
a >= b true iff a is greater than or equal to b
a && b true iff a is true and b is true

a || b true iff a is true or b is true
!a true iff a is false

Introduction to C CS 2022, Spring 2011, Lecture 2

Booleans in C

I C DOES NOT have a boolean type.
I Instead, conditional operators evaluate to integers (int)

I 0 indicates false. Non-zero value is true.
I if (<condition>) checks whether the condition is non-zero.

I Programmer must be very careful to this point!

Examples

if (3)

printf("True.\n");

if (!3)

// unreachable code

if (a = 5)

// always true, potential bug (a == 5)

int a = (5 == 5); // a = 1

Introduction to C CS 2022, Spring 2011, Lecture 2

Booleans in C

I C DOES NOT have a boolean type.
I Instead, conditional operators evaluate to integers (int)

I 0 indicates false. Non-zero value is true.
I if (<condition>) checks whether the condition is non-zero.
I Programmer must be very careful to this point!

Examples

if (3)

printf("True.\n");

if (!3)

// unreachable code

if (a = 5)

// always true, potential bug (a == 5)

int a = (5 == 5); // a = 1

Introduction to C CS 2022, Spring 2011, Lecture 2

Booleans in C

I C DOES NOT have a boolean type.
I Instead, conditional operators evaluate to integers (int)

I 0 indicates false. Non-zero value is true.
I if (<condition>) checks whether the condition is non-zero.
I Programmer must be very careful to this point!

Examples

if (3)

printf("True.\n");

if (!3)

// unreachable code

if (a = 5)

// always true, potential bug (a == 5)

int a = (5 == 5); // a = 1

Introduction to C CS 2022, Spring 2011, Lecture 2

Conditional expressions

<condition> ? <expression1> : <expression2>

grade = (score >= 70 ? ’S’ : ’U’);

printf("You have %d item%s.\n", n, n == 1 ? "" : "s");

Conditional expression often leads to succinct code.

Introduction to C CS 2022, Spring 2011, Lecture 2

Conditional expressions

<condition> ? <expression1> : <expression2>

grade = (score >= 70 ? ’S’ : ’U’);

printf("You have %d item%s.\n", n, n == 1 ? "" : "s");

Conditional expression often leads to succinct code.

Introduction to C CS 2022, Spring 2011, Lecture 2

switch Statement

A common form of if statement

if (x == a)

statement1;

else if (x == b)

statement2;

...

else

statement0;

switch statement

switch (x)

{

case a: statement1; break;

case b: statement2; break;

...

default: statement0;

}

Introduction to C CS 2022, Spring 2011, Lecture 2

switch Statement

A common form of if statement

if (x == a)

statement1;

else if (x == b)

statement2;

...

else

statement0;

switch statement

switch (x)

{

case a: statement1; break;

case b: statement2; break;

...

default: statement0;

}

Introduction to C CS 2022, Spring 2011, Lecture 2

More on switch Statement

Fall-through property

int month = 2;

switch (month)

{

case 1:

printf("Jan.\n");

break;

case 2:

printf("Feb.\n");

case 3:

printf("Mar.\n");

default:

printf("Another month.\n");

}

Feb.
Mar.
Another month.

Introduction to C CS 2022, Spring 2011, Lecture 2

More on switch Statement

Fall-through property

int month = 2;

switch (month)

{

case 1:

printf("Jan.\n");

break;

case 2:

printf("Feb.\n");

case 3:

printf("Mar.\n");

default:

printf("Another month.\n");

}

Feb.
Mar.
Another month.

Introduction to C CS 2022, Spring 2011, Lecture 2

More on switch Statement

Fall-through property

int month = 2;

int days;

switch (month)

{

case 2:

days = 28;

break;

case 9:

case 4:

case 6:

case 11:

days = 30;

break;

default:

days = 31;

}

It’s always recommended to have default, though it’s optional.

Introduction to C CS 2022, Spring 2011, Lecture 2

More on switch Statement

Fall-through property

int month = 2;

int days;

switch (month)

{

case 2:

days = 28;

break;

case 9:

case 4:

case 6:

case 11:

days = 30;

break;

default:

days = 31;

}

It’s always recommended to have default, though it’s optional.

Introduction to C CS 2022, Spring 2011, Lecture 2

while Loop

I while (<condition>) <statement>

I If the condition is initially false, the statement is never
executed.

I do <statement> while (<condition>);
I The statement is executed at least one.

Introduction to C CS 2022, Spring 2011, Lecture 2

while Loop

I while (<condition>) <statement>
I If the condition is initially false, the statement is never

executed.

I do <statement> while (<condition>);
I The statement is executed at least one.

Introduction to C CS 2022, Spring 2011, Lecture 2

while Loop

I while (<condition>) <statement>
I If the condition is initially false, the statement is never

executed.

I do <statement> while (<condition>);

I The statement is executed at least one.

Introduction to C CS 2022, Spring 2011, Lecture 2

while Loop

I while (<condition>) <statement>
I If the condition is initially false, the statement is never

executed.

I do <statement> while (<condition>);
I The statement is executed at least one.

Introduction to C CS 2022, Spring 2011, Lecture 2

for Loop

for (<exp1>; <exp2>; <exp3>) <statement>

exp1;

while (exp2)

{

statement

exp3;

}

for (i = 0; i < n; ++i)

{

// do something

}

Introduction to C CS 2022, Spring 2011, Lecture 2

Infinite Loop

while (1)

{

// do something

}

for (;;)

{

// do something

}

Both are okay, but for may lead to fewer machine code on some
platform, which means it is slightly more efficient.

Introduction to C CS 2022, Spring 2011, Lecture 2

Infinite Loop

while (1)

{

// do something

}

for (;;)

{

// do something

}

Both are okay, but for may lead to fewer machine code on some
platform, which means it is slightly more efficient.

Introduction to C CS 2022, Spring 2011, Lecture 2

break and continue

break

int n = 10;

while (1)

{

if (!n)

{

break;

}

--n;

}

continue

int i;

for (i = 0; i < 10; ++i)

{

if (i == 0)

{

continue;

}

printf("%d\n", i);

}

Introduction to C CS 2022, Spring 2011, Lecture 2

Common Pitfalls

int i;

for (i = 0; i < 10; ++i);

printf("%d\n", i);

int n = 10;

while (n = 1)

{

printf("%d\n", n);

--n;

}

Introduction to C CS 2022, Spring 2011, Lecture 2

How to Avoid Bugs?

Always use {}

int i;

for (i = 0; i < 10; ++i)

{

printf("%d\n", i);

}

Put literals on the left

int n = 10;

while (1 == n)

{ // 1 = n, compilation error

printf("%d\n", n);

--n;

}

Introduction to C CS 2022, Spring 2011, Lecture 2

