
Course Recap
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Saikat Guha)

Fall 2011, Lecture 13

Course Recap CS 2022, Fall 2011, Lecture 13

Hello World!

#include <stdio.h>

void print_greeting()

{

printf("Hello World!\n");

}

int main(int argc, char **argv)

{

print_greeting();

return 0;

}

Course Recap CS 2022, Fall 2011, Lecture 13

Command Line Arguments

I When an application launches, the operating
system can pass it command line arguments

I Optional and not required
I int main(int argc, char **argv)

I argc - arguments count
I argv - array of arguments as strings
I application name counted as an argument, so argc

is at least 1

I int main() is also valid if you don’t care
about command line arguments

Course Recap CS 2022, Fall 2011, Lecture 13

Data Types 1/3 (Primitives)

I int - integer (size is platform dependent)

I int32 t - 32-bit integer on all platforms

I float - floating point number

I char - character

I int[10] - array of 10 integers

I char[10] - array of 10 characters (a string)

I ...

Course Recap CS 2022, Fall 2011, Lecture 13

Data Types 2/3 (structs)

struct person

{

char[20] name;

int age;

char[256] address;

};

I struct types hold collections of elements

I struct person (both words together) is now
a “data type”

I Declare variables as such:
struct person john doe;

I the ‘.‘ operator is used to access struct members
john doe.age

Course Recap CS 2022, Fall 2011, Lecture 13

Data Types 3/3 (Pointers)

I Pointers are variables whose contents are
interpreted as the memory addresses of other
variables

Course Recap CS 2022, Fall 2011, Lecture 13

Data Types 3/3 (Pointers)

I Pointers are variables whose contents are
interpreted as the memory addresses of other
variables

I int *value;

struct person *john doe;
I Operators relating to pointers

I * - dereference: follow pointer and read data value
I & - address of : get address of a variable (usually to

store in pointer)
I -> - access element: access elements of a struct

pointer. Equivalent to (*).

Course Recap CS 2022, Fall 2011, Lecture 13

Memory

I Stack
I memory allocated statically by compiler
I memory released back to system automatically

after function returns

I Heap
I memory allocated dynamically by programmer at

run-time
I memory has to be released back to system (freed)

manually by programmer
I use malloc(size) and free(pointer) to

allocate and free memory
I int *ptr = (int *) malloc(sizeof(int));

free(ptr);

Course Recap CS 2022, Fall 2011, Lecture 13

Frequently Used Libraries

I stdio.h - provides printf, scanf, fgets and
other input/output functions

I stdlib.h - provides malloc and free

functions

I string.h - provides strcmp, strcpy and
other string manipulation functions

I stdint.h - provides int32 t, uint32 t,
int64 t, uint64 t and other fixed size
integers

Remember to include the correct library when using
something provided by it!

Course Recap CS 2022, Fall 2011, Lecture 13

Debugging
I Debugging is extremely valuable to determine

what is going wrong with your program
I GDB is an interactive command line debugger

I break <function name or line number> -
sets a break point at a function def. or a line #

I print <variable name or expression> -
prints the value of a variable or an expression on
program variables

I run <command line arguments> -
starts running the program with the given
command line arguments

I help - find help on more commands

I Compile your code with the -g flag for gcc to
be able to debug the program with gdb

Course Recap CS 2022, Fall 2011, Lecture 13

Terminal Input/Output

I Output to screen
I printf("Hi %d", 5); - print formatted text
I puts("Hello World!"); - print a string

I Input from keyboard
I gets(buffer_array); - read a single line from

stdin into the buffer array
I fgets(buf, 128, stdin); - read a single line or

at most 128 characters from stdin into buf
I scanf("%s %d", buf, &i); - read from stdin

and “parse” input according to given format

Many more variants that work with any stream type
(for example good for file I/O)

Course Recap CS 2022, Fall 2011, Lecture 13

File I/O

Opening and closing files
int fd; // File Descriptor

fd = open("/path/to/file", O RDWR | O CREAT);

close(fd);

Reading and Writing
char buf[4096]; int len;

len = read(fd, buf, 4096)

len = write(fd, buf, 4096);

WARNING: Size passed is only a suggestion. May read/write fewer than requested

number of bytes. Return value is number of bytes actually read/written. MUST retry

if not fully read/written.

Course Recap CS 2022, Fall 2011, Lecture 13

Network I/O

Opening and closing network sockets
int sock; // File Descriptor

sock = socket(PF INET, SOCK STREAM, IPPROTO TCP);

close(sock);

Internet Addresses
struct sockaddr in addr;

addr.sin family = AF INET;

addr.sin addr.s addr = htonl(0x7F000001);

addr.sin port = htons(8080);

Fill the address info manually or get the info
automatically with getaddrinfo().
See man getaddrinfo

Course Recap CS 2022, Fall 2011, Lecture 13

Bitwise Operations

I Manipulate individual bits in a variable

I Useful for many things, one of which is
serialization

I Operators
I a & b - bitwise AND
I a | b - bitwise OR
I a ^ b - bitwise XOR
I ~a - bitwise one’s complement
I a << b - bitwise shift left
I a >> b - bitwise shift right

Course Recap CS 2022, Fall 2011, Lecture 13

Threads

Starting a thread
#include <pthread.h>
...

pthread t id;

err = pthread create(&id, NULL, entry func, arg);

Body of a thread
void *entry func(void *arg) {

...

Exiting current thread
...

pthread exit((void *)return value);

}

Course Recap CS 2022, Fall 2011, Lecture 13

Resources

I Dave’s programming in C tutorials:
http://www.cs.cf.ac.uk/Dave/C/CE.html

I Linux manual pages
man pthread create
man stdlib.h

I also available online at http://linux.die.net/

I Search online!
Plenty of resources and tutorials online

Course Recap CS 2022, Fall 2011, Lecture 13

Questions ?

Course Recap CS 2022, Fall 2011, Lecture 13

Sample Interview Questions

1. Swap two arbitrary variables without using a
third temporary variable.

2. A linked list can become corrupt if the last
element’s “next pointer” points back to some
previous element rather than NULL. This can
cause functions that traverse the list to loop
for ever. Write a small C function to determine
whether a given linked list is corrupt or not.

Course Recap CS 2022, Fall 2011, Lecture 13

