
Serialization and Bit Operations
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Renato Paes Leme)

Fall 2011, Lecture 10

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Serialization

I Sending data between programs
I Disk
I Network
I Pipes

I Between programs on multiple hosts
I Different endianness
I Different architectures

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Binary vs. Text

Binary. . .

I Compact

I Easy to encode/decode

I Faster

e.g. IP, TCP, AIM, . . .

Text. . .

I Easily debugged

I (Can be)
self-documenting

I Arch/Endian independent

e.g. HTTP, SMTP, MSN

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Ok, but how?

What serialization solution to use?

I tpl library

I c11n library

I Google protocol buffers

I Customized solution

Which standard to use?

I XML, XDR, protocol buffer, ...

I Network protocol standards

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Handling Endianness

Decimal: 3735928559
Binary: 11011110101011011011111011101111

Hex: 0xdeadbeef
Big Endian: 0xde 0xad 0xbe 0xef
Little Endian: 0xef 0xbe 0xad 0xde

Always in big-endian form when loaded into the CPU

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Bit-Operations

AND-Mask (clear bits)
a & b
11011110101011011011111011101111 0xdeadbeef

& &
00000000000000001111111100000000 0x0000FF00

= =

00000000000000001011111000000000 0x0000be00

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Bit-Operations

OR-Mask (sets bits)
a | b
11011110101011011011111011101111 0xdeadbeef

| |
00000000000000000101010100000000 0x00005500

= =

11011110101011011111111111101111 0xdeadFFef

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Bit-Operations

Left-Shift
a << b
11011110101011011011111011101111 0xdeadbeef

<< <<
8 8
= =

10101101101111101110111100000000 0xadbeef00

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Bit-Operations

Right-Shift
a >> b
11011110101011011011111011101111 0xdeadbeef

>> >>
8 8
= =

00000000110111101010110110111110 0x00deadbe
1

1for unsigned ints only. For signed ints, the instead of zero-padding,
the top-most bit is repeated

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Bit-Operations

Compliment (flips bits)
∼a
∼11011110101011011011111011101111 ∼0xdeadbeef

= =

00100001010100100100000100010000 0x21524110

2’s compliment representation for negative numbers:
-x = ∼x + 1

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Exercise 1
int htonl(int x) {

int b1, b2, b3, b4, y;

b1 = (x _____) ___;

b2 = (x _____) ___;

b3 = (x _____) ___;

b4 = (x _____) ___;

y = (b1 _____) __ (b2 ____)

__ (b3 ____) __ (b4 ____);

return y;

}
Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Serialization

I Use structures for data-types

I Copy data in one-go
memcpy(dst, src, numbytes)

I Use standard (big) endianness for multi-byte
variables

I NEVER serialize pointer values. Why?

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Tricks with bits

I How to iterate over all sets
S ⊆ {0, 1, 2, . . . , k − 1} ?

I There are 2k such sets. I just need one for to
do that.

I Think of a number 0 ≤ 0 < 2k in binary. It
represents a subset of S .

I Given a subset S , let ai =

{
1, i ∈ S

0, i /∈ S
, then we

represent S by
∑k−1

i=0 ai2
i .

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Tricks with bits

How to iterate over all sets S ⊆ {1, . . . , n} ?

int S;

for (S = 0; S < (1<<n); ++S) {

// process subset S

}

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Set Operations
Given two sets A and B represented as binary
strings:

I Union:

A | B

I Intersection:

A & B

I Single element set {1}:
1 << i

I Testing i ∈ A:

A & (1 << i) != 0

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Set Operations

Given two sets A and B represented as binary
strings:

I Adding element i to A:

A = A | (1 << i)

I Removing element i from A:

A = A & ~(1 << i)

I Toggle element i in A:

A = A ^ (1 << i)

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Set Operations

Given S a string representation of a set, how to
iterate over all its subsets T ⊆ S :

int T;

for (T = S; T>=0; T = (T-1)&S) {

// process subset T

}

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Set Operations

More complicated exercise: how to iterate over all
subsets of {1, . . . , n} of size k .

int s = (1 << k) - 1;

while (!(s & 1 << N))

{

// do stuff with s

int lo = s & ~(s - 1); // lowest one bit

int lz = (s + lo) & ~s; // lowest zero bit above lo

s |= lz; // add lz to the set

s &= ~(lz - 1); // reset bits below lz

s |= (lz / lo / 2) - 1; // put back right number of bits at end

}

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Source of bit tricks

A bit of fun, fun with bits:
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

Other iteration exercises

1. Write a code that iterates over {0, . . . , n− 1}k ,
i.e., all k-uples (t1, . . . , tk) where 0 ≤ ti < n.

2. Write a code that iterates over {0, . . . , n− 1}k ,
i.e., all k-uples (t1, . . . , tk) where 0 ≤ ti < n
and t1 ≥ t2 ≥ . . . ≥ tk .

3. Write a code that iterates over all the
permutations of {1, . . . , n} and writes them on
the screen.

Serialization and Bit Operations CS 2022, Fall 2011, Lecture 10

