
Debugging
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Saikat Guha)

Fall 2011, Lecture 7

Debugging CS 2022, Fall 2011, Lecture 7

Before we begin...

I A quick note on arrays
I We said that there are similarities between arrays

and pointers
I You can use pointers as if they they are arrays (i.e.

ptr[1])
I But they are not exactly the same

Debugging CS 2022, Fall 2011, Lecture 7

Before we begin...

I ptr1 = ptr2; makes sense
I Here we are assigning the value of variable ptr2 to

the variable ptr1
I The values just happen to be memory addresses

I array1 = array2; does not make sense
I array1 and array2 are the base addresses of the

array, but they are not full-fledged pointers (we can
not have them point to different memory locations)

I C does not automatically copy the values of one
array to another (what if they are different in size?)

I So expressions like array1 = array2; and
char str[100] = argv[1]; will give you
compilation errors

Debugging CS 2022, Fall 2011, Lecture 7

Print Debugging
I Manually insert debugging statements
I Debugging statements print to screen

I Caution: stdout is buffered. printf output may not
appear before program crashes.

I Solution: stderr is unbuffered.

printf debugging
fprintf(stderr, "%d %p", i, p);

I %d – int

I %s – char *

I %p – any pointer

I see man page for others $ man 3 printf

Debugging CS 2022, Fall 2011, Lecture 7

debug.c: Trace Information

#include <stdio.h>

int main(int argc, char **argv) {

fprintf(stderr, "%s:%d:%s\t%s\n", __FILE__,

__LINE__, __FUNCTION__, argv[0]);

fprintf(stderr, "%s:%d:%s\t%s\n", __FILE__,

__LINE__, __FUNCTION__, argv[1]);

fprintf(stderr, "%s:%d:%s\t%s\n", __FILE__,

__LINE__, __FUNCTION__, argv[2]);

}

trace.c:5:main ./trace

trace.c:8:main hello

trace.c:11:main world

Debugging CS 2022, Fall 2011, Lecture 7

GDB: GNU Debugger
I Using printf is fine to get a quick idea about

what might be wrong
I Using trace printing can give more info
I But, no substitute for debugging!
I Debugging allows us to:

I step into the code
I see the execution path of our program
I examine the values of all variables
I set up breakpoints for careful examination
I get a better idea of what is going wrong

I GDB is a command-line debugger for many
languages including C

I Not only debugger for C however!

Debugging CS 2022, Fall 2011, Lecture 7

GDB: Commands
I b <function> – Breakpoint on entering

function
I r <args> – Run program
I list – print C code
I n – execute one statement
I s – execute one step (step into function calls)
I c – Continue running program
I p <variable> – print the value of a variable
I bt – Backtrace the stack
I fr <num> – Make stackframe <num> current

frame for printing variables
I q – Quit
I help – More GDB help

Debugging CS 2022, Fall 2011, Lecture 7

GDB: GNU Debugger
[saikat@submit cs113]$ gcc -g -o cmd cmd.c

[saikat@submit cs113]$./cmd foo

Segmentation fault

[saikat@submit cs113]$ gdb ./cmd

...

(gdb) b main

Breakpoint 1 at 0x80483a4: file cmd.c, line 3.

(gdb) r foo

...

Breakpoint 1, main (argc=1209306428, argv=0x4802f4c6) at

cmd.c:3

3 int main(int argc, char **argv) {
(gdb) n

main (argc=2, argv=0xbfb646e4) at cmd.c:6

6 n = atoi(argv[1]);

(gdb) p argc

$1 = 2

Debugging CS 2022, Fall 2011, Lecture 7

GDB: GNU Debugger
(gdb) p argv[0]

$2 = 0xbfb65c84 "/home/netid/cs113/cmd"

(gdb) c

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x48045eae in strtol l internal () from /lib/libc.so.6

(gdb) bt

#0 0x48045eae in strtol l internal () from

/lib/libc.so.6

#1 0x48045c57 in strtol internal () from /lib/libc.so.6

#2 0x48043511 in atoi () from /lib/libc.so.6

#3 0x080483eb in main (argc=2, argv=0xbfb646e4) at cmd.c:7

(gdb) fr 3

#3 0x080483eb in main (argc=2, argv=0xbfb646e4) at cmd.c:7

7 m = atoi(argv[2]);

(gdb) p argv[2]

$3 = 0x0

Debugging CS 2022, Fall 2011, Lecture 7

Things to try

I Crash a program by dereferencing a NULL
pointer.

I Crash a program by running out of stack space.

I Crash a program by clobbering the stack (e.g.
the return address).

I Crash a program by calling abort().

... debug each of these cases using GDB

Debugging CS 2022, Fall 2011, Lecture 7

