
CS 2022 – Fall 2011
Assignment #2

9/12/2009
Due: Sunday 9/18/2009 11:59 PM

In this assignment you are asked to write a small C program to demonstrate command of 
principles we have discussed in class so far.

Characters Frequency Calculator

You are asked to write a C program charfreq.c that will take-in multiple command line 
arguments and output statistical information about these arguments. More specifically, your 
program will output a table listing all the characters (letters, numbers, spaces, or whatever .. i.e. 
you do not have to check if the contents of the passed-in strings are alphabet letters).

Here are some example runs:
• :~> ./charfreq "HELLO CLASS"

H-1
E-1
L-3
O-1
 -1
C-1
A-1
S-2

• :~> ./charfreq i can count 123
i-1
c-2
a-1
n-2
o-1
u-1
t-1
1-1
2-1
3-1

Notice that each character is printed in the table exactly once. Also notice that the space 
character was printed in the first example but not the second because the first example had only 
one command line argument which happened to contain the space (that is why the quotes were 
used), while in the second example, three separate command line arguments were passed-in and 
no spaces were in any of them. The characters must be printed in the order as they 
appear in the arguments list.

Technicalities
In this assignment you have to demonstrate your knowledge of "complex" C types. So you 
must store each character count in a instance of a struct you define, and you have to link 



structs to one another via pointers.

So for example, you should define and use something like this:
struct char_count {

char c;
int count;
struct char_count *next;

};

Of course you may use typedef to make dealing with that struct a bit less wordy/ugly. 
The next pointer points to the next character count, and the pointer in the last struct 
instance should point to NULL. Thus, printing out the table should just be a matter of starting at 
the first struct, printing that character and its its count, then going down to the next character 
count struct.

Submission and Testing

Submit your work on CMS (http://cms.csuglab.cornell.edu/) by the deadline. Make sure you 
have been added to CMS early on and otherwise contact me via email. You should submit the 
source code (the .c files) of your application and not the compiled binaries.

Your programs will be compiled with gcc and tested on a linux environment. You are free to 
choose the environment of your liking to develop your solutions, but keep in mind that testing 
will be on a fixed environment, and your application is expected to run on that.

Academic Integrity Reminder

Remember that you may have general discussions about how to approach this problem with 
your peers, but you should work on the final solution by yourself alone. If you are stuck or are 
having trouble, you may email me or talk to me after class on Monday or during my office hour 
on Wednesday.

Good Luck!


