
Word histograms

This assignment will explore simple, unbalanced, binary search trees of strings.
You will create a program, hist, which produces a histogram of its command-
line arguments; that is, a table showing the number of times each string appeared
on the command line, sorted alphabetically. For example:

$ ./hist foo bar foo foo quux blah bar

2 bar

1 blah

3 foo

1 quux

$ ./hist x y z z y

1 x

2 y

2 z

$ ./hist

$ ./hist a a a a a a a a a a a a a a

14 a

To maintain the counts, and keep the strings sorted, you will implement a
very simple tree structure according to this header:

tree.h
1 struct tree {

2 struct tree *left;

3 struct tree *right;

4 char *value;

5 unsigned count;

6 };

8 struct tree *tree_add(struct tree *tree, char *value);

9 void tree_dump(struct tree *tree);

10 void tree_free(struct tree *tree);

A struct tree * represents the root of a binary search tree of strings. Its
left member is its left sub-tree, or NULL if there is none; similarly for right.
The string itself is value, and the invariant is that value is greater than all
of the values down the left sub-tree, and less than all of the values down the
right sub-tree. (You will certainly want the strcmp function, from string.h,
to determine which of two strings is greater or if they are equal.) If a value
is added to the tree multiple times, create only one node for it, but increment
count to track the number of appearances.

The tree_add function takes an existing tree (possibly NULL, for an empty
tree) and a value, and returns the tree with the value added to it. For example,
to start with an empty tree and add the values "foo" and "bar" to it:

1



1 struct tree *tree = NULL;

2 tree = tree_add(tree, "foo");

3 tree = tree_add(tree, "bar");

The tree_dump function prints the histogram table as shown above. Hint:
Use in-order traversal of the tree in order to print out each value in sorted
order. A good printf format string for the count and value on each line is
"%4u\t%s\n".

Because each node will be allocated with malloc, you will also write tree_free,
which recursively calls free on every node in a tree.

Put each function in its own file; for example, implement tree add in tree add.c.
In a file named hist.c, write a main function that adds each of its command-
line arguments (not including argv[0], the name of the program) to an initially
empty tree, dumps it, and then frees it. If you name your files as indicated, the
following Makefile will enable you to build your program by simply typing
make.

Makefile
1 CFLAGS=-Wall -g

3 OBJECTS=\

4 hist.o \

5 tree_add.o \

6 tree_dump.o \

7 tree_free.o

9 hist: $(OBJECTS)

10 hist.o: hist.c tree.h

11 tree_add.o: tree_add.c tree.h

12 tree_dump.o: tree_dump.c tree.h

13 tree_free.o: tree_free.c tree.h

15 .PHONY: clean

16 clean:

17 rm -f hist $(OBJECTS)

On CMS, submit your source files, hist.c, tree_add.c, tree_dump.c, and
tree_free.c; when grading, I will provide the tree.h header file and the
Makefile as they appear above.

2

http://cms.csuglab.cornell.edu

