
Quick start with C, gcc, and gdb

Begin with a simple integer temperature conversion program, without inputs or
outputs, in a file named conversion.c.

conversion.c
1 int main(int argc, char **argv)

2 {

3 int fahrenheit, celsius;

4 celsius = -40;

5 fahrenheit = 9 * celsius / 5 + 32;

6 return 0;

7 }

There is one function, main; whenever any program is compiled and run,
its main function is the starting point. Its arguments and return value are
important, but not to this quick introduction. The first line of the body is
a declaration, indicating that there shall be two variables, fahrenheit and
celsius, both with type int, meaning that they can store integers. In the
actual body of the function, first celsius is assigned a value, and then the
appropriate temperature conversion is performed to assign the equivalent value
to fahrenheit (up to the precision possible with integers, of course).

Compile the program with gcc. As a typographical
convention, $ indicates
a shell prompt, text
like this is the user’s
input, and this sort

of text is the output.

$ gcc -Wall -g -o conversion conversion.c

Modern compilers are also extremely advanced static analysis tools and are
capable of detecting many bugs that will otherwise make you feel stupid after
hours of hunting. You want the compiler to do your work for you, so the -Wall
(“all warnings”) option is essential. Because this program has no output, you
will have to examine it in the debugger, gdb, in order to see what is going on.
Passing gcc the -g option tells it to include debugging symbols in the compiled
program so that gdb knows variable names and so forth. Finally, by tradition,
gcc defaults to placing the compiled, executable program in a file named a.out;
the option -o conversion specifies a more appropriate name.

Now try running the program. Run ./conversion,
rather than plain
conversion, to
explicitly execute the
file named conversion

in the current working
directory, which is
named . (“dot”). This
avoids the shell
searching for your
program on the PATH.

$./conversion

Naturally, it is silent. Bring it up in the debugger to see what is going on.

$ gdb conversion

(gdb) break main

Breakpoint 1 at 0x80483ba: file conversion.c, line 4.

(gdb) run

1

Starting program: /home/robert/CS2022/conversion

Breakpoint 1, main (argc=1, argv=0xbffff4e4) at conversion.c:4

4 celsius = -40;

(gdb) print celsius

$1 = 134513664

(gdb) print fahrenheit

$2 = 0

(gdb) next

5 fahrenheit = 9 * celsius / 5 + 32;

(gdb) print celsius

$3 = -40

(gdb) next

6 return 0;

(gdb) print fahrenheit

$4 = -40

(gdb) continue

Continuing.

Program exited normally.

(gdb) quit

Note that uninitialized variables have unpredictable values; in this run,
celsius happened to be 134513664, and fahrenheit happened to be 0. Always
make sure, as is the case in this example, that variables are assigned reasonable
values before they are used!

In this case, celsius and fahrenheit were the same, because the two tem-
perature scales cross at minus forty degrees. It is also possible to change a
running program in the debugger. The print command accepts an arbitrary
C expression, including assignments; we can use that to try other conversions
without editing the code. (A better way, of course, would be to add some way
of taking input; we will get there.) The debugger also

accepts
non-ambigiuous
prefixes of commands,
for example b instead
of break. Also, simply
pressing enter will
often repeat the
previous command,
which is particularly
useful for commands
like next.

$ gdb conversion

(gdb) b main

Breakpoint 1 at 0x80483ba: file conversion.c, line 4.

(gdb) r

Starting program: /home/robert/CS2022/conversion

Breakpoint 1, main (argc=1, argv=0xbffff4e4) at conversion.c:4

4 celsius = -40;

(gdb) n

5 fahrenheit = 9 * celsius / 5 + 32;

(gdb) p celsius

$1 = -40

(gdb) p celsius = 0

$2 = 0

(gdb) n

2

6 return 0;

(gdb) p fahrenheit

$3 = 32

(gdb) cont

Continuing.

Program exited normally.

(gdb) q

This first program uses only pure, ANSI C, without any libraries at all,
even the C standard library. To produce output, however, we must introduce
the standard library, and in particularly the very powerful function printf
(“print formatted”). In order to access its declaration, you must direct the C
preprocessor (more on that later) to include the header file stdio.h (“standard
input and output”).

As a powerful function, printf can also be a bit tricky. For example, it can
take a variable number of arguments. The first and only required argument is a
“format string”; most characters of the format string stand for themselves and
are simply printed out. Thus, a more common first C program is the famous
“hello world” program:

hello.c
1 #include <stdio.h>

2 int main(int argc, char **argv)

3 {

4 printf("Hello, world!\n");

5 return 0;

6 }

Notice the new first line to include stdio.h. The only tricky thing about this
string is the sequence \n, which in C strings stands for the newline character.

$ gcc -Wall -g -o hello hello.c

$./hello

Hello, world!

In printf format strings, you can also specify additional arguments to the
function that will be formatted and inserted in the appropriate place. For
instance, if the format contains %d, an integer will be expected in the arguments
to printf arguments, and it will be formatted in ordinary decimal and printed
out. Using this, extend the temperature conversion program to be less mute.

conversion2.c

3

1 #include <stdio.h>

2 int main(int argc, char **argv)

3 {

4 int fahrenheit, celsius;

5 celsius = -40;

6 fahrenheit = 9 * celsius / 5 + 32;

7 printf("%d Celsius is %d Fahrenheit.\n", celsius, fahrenheit);

8 return 0;

9 }

And the result:

$ gcc -Wall -g -o conversion2 conversion2.c

$./conversion2

-40 Celsius is -40 Fahrenheit.

4

