
Computation, Information, and Intelligence (COMS/ENGRI/INFO/COGST 172), Fall 2005
11/23/05: Lecture 37 aid — Limits on computability

Agenda: discover some limits on the powers of computers (and by extension, people, or at least
computer scientists) by:

• considering the machine/program duality from the beginning of class more formally, thus
seeing that TMs are actually quite powerful, and

• proving (following Kleinberg and Papadimitrious’s presentation) that the halting function
is not computable, thus showing that there are fundamental limits to our understanding of
computational processes.

Announcements: Something we forgot to add to the solutions for Homework Five: in the Earley’s
algorithm question, an important observation one should draw is that when multiple parses share
some substructure (e.g., the sub-tree for the prepositional phrase “on Tuesday”), that substructure
is only computed once in total, not once for each parse it appears in. This “packing” of shared
substructure is the reason that Earley’s algorithm is so efficient.
Follow-ups:

• Our restriction of consideration to functions only on the non-negative integers is a simpli-
fication. It is not too difficult to see how Turing machines could compute functions whose
input and output involve numbers with finite decimal expansions, or complex items such as
sentences and parses. What is lethally problematic is input and/or output involving infinite
sequences, since by definition a TM that computes a function halts its operations in a finite
amount of time, whereas the time it would take to just write down a number with an infi-
nite number of digits would blow past the finite-time limit. (There are deeper mathematical
problems that arise as well, but discussion of these are beyond the scope of this course.)

• The date (“11/19/05”) on last lecture’s handout was, of course, wrong. I have no idea what
happened.

I. Enumeration of “A-machines” We denote by M1,M2, . . . an infinite list (with no repeats)
of all TMs that take only sequences of A’s as input.1 The list is such that given a (suitably encoded)
non-negative integer i, it is possible to recover the program for Mi (i.e., there exists a Turing machine
that does the job).

The sequences of A’s are intended to be encodings of non-negative integers.2 Thus, all com-
putable functions whose domain is the non-negative integers3 are represented in the list, but there
are also many TMs on the list that don’t compute such functions.

1This is a modification of what was given on the previous handout, which should cause no confusion since we
didn’t actually discuss that point last time. The technical problem with requiring that only A’s be output is that it
would be best to allow TMs to use different “scratch” symbols, and determining whether a TM prints as part of its
output a symbol other than A turns out, for general TMs, to be impossible (this result is in fact a consequence of
the non-computability of the halting function).

2This encoding is non-traditional; we have chosen it in order to remove a layer of self-reference from our proof.
3We technically should put some restrictions on the range, too — essentially, that the elements of the range be

representable as finite sequences over a finite symbol set — but we’ll ignore this point.

(OVER)



II. The halting function

h(Mi, j) =
{

1 (yes), if Mi would halt given j A’s as input
0 (no) if Mi would not halt given j A’s as input

Note that by “halting”, we mean “would halt in a finite number of steps”.

III. The evil machine X Suppose a termination detector D exists. Then we could construct
a Turing machine X that, when given j A’s as input,

(a) recovers the program for Mj ;
(b) runs D to determine the value (0 or 1) of h(Mj , j); and
(c1) if that value is “1”, enters an artificial infinite loop
(c2) if that value is “0”, sets its output to 1 and halts

Common point of confusion: we can show that X, and therefore D, does not exist, meaning that
the halting function is not computable. But the function does exist (as much as any mathematical
function, like f(x) = x2, can be said to exist), and is well-defined, and so on. So for every Mi and
j, there is a value, either 0 or 1, to h(Mi, j); it’s just that we have no general way to determine
what that value is for arbitrary Mi and j.


