Computation, Information, and Intelligence (COMS/ENGRI/INFO/COGST 172), Fall 2005 11/21/05: Lecture 36 aid - Turing machines, continued

Agenda: Examples and definitions; computability of functions; from machines to programs.
I. Example one-tape Turing machine We specify the state set as "carry" and "no-carry"; the start state as "carry"; the allowable input symbols as $0,1, \ldots, 9$ (note that "blank" should not be an allowable input symbol); we'll ignore other details that would be required in a full specification; and specify the machine's behavior as follows.

If reading a " 0 " and in state "carry", write " 1 ", change to state "no-carry", stay put. If reading a " 1 " and in state "carry", write " 2 ", change to state "no-carry", stay put. If reading a " 2 " and in state "carry", write " 3 ", change to state "no-carry", stay put.

If reading a " 9 " and in state "carry", write " 0 ", stay in state "carry", move right. If reading a "blank" and in state "carry", write " 1 ", change to state "no-carry", stay put.
(In a way, we are allowing a completely blank tape to represent the input number zero even though we have a symbol " 0 ", but for simplicity we have elected not to deal with this issue.)
II. Another example one-tape TM For brevity, we'll skip most of the initial specification that should be given. We'll assume there's a special marker "!" at the beginning of the tape. The start state is "no-carry".
end-of-tape rule:
If reading a "!" and in state "no-carry", write "!", change to state "carry", move right. carry rules:

If reading a " 0 " and in state "carry", write " 1 ", change to state "no-carry", move left. If reading a " 1 " and in state "carry", write " 2 ", change to state "no-carry", move left. If reading a " 2 " and in state "carry", write " 3 ", change to state "no-carry", move left.

If reading a " 9 " and in state "carry", write " 0 ", stay in state "carry", move right.
If reading a "blank" and in state "carry", write " 1 ", change to state "no-carry", move left.
return-to-tape-end rules:
If reading a " 0 " and in state "no-carry", write " 0 ", stay in state "no-carry", move left. If reading a " 1 " and in state "no-carry", write " 1 ", stay in state "no-carry", move left. If reading a " 2 " and in state "no-carry", write " 2 ", stay in state "no-carry", move left.

If reading a " 9 " and in state "no-carry", write " 9 ", stay in state "no-carry", move left.
III. Definition of TM function computation Let $f: D \rightarrow R$ be a function. A Turing machine M computes f if, for every $x \in D$, when M is initialized with input x, it eventually halts - ends up in a situation where no rule applies - with $f(x)$ on its (output) tape.

We will also allow for encodings of x and $f(x)$. For example, we might have a Turing machine that, given n "hash marks" as input, returns n^{2} "hash marks"; we would then still say that the Turing machine computes $f(x)=x^{2}$, where x is a non-negative integer.
IV. Enumeration of "A-machines" We denote by M_{1}, M_{2}, \ldots a infinite list (with no repeats) of all TMs that take only sequences of A's as input and produce sequences of A's as output. The list is such that given a (suitably encoded) number i, it is possible to recover the program for M_{i} (i.e., there exists a Turing machine that does the job).

The sequences of A's are intended to be encodings of non-negative integers. Thus, all computable functions from the non-negative integers to the non-negative integers are represented in the list.

V. The halting function

$$
h\left(M_{i}, j\right)= \begin{cases}1 \text { (yes), } & \text { if } M_{i} \text { would halt given } j \text { A's as input } \\ 0 \text { (no) } & \text { if } M_{i} \text { would not halt given } j \text { A's as input }\end{cases}
$$

