
Computation, Information, and Intelligence (COMS/ENGRI/INFO/COGST 172), Fall 2005
11/21/05: Lecture 36 aid — Turing machines, continued

Agenda: Examples and definitions; computability of functions; from machines to programs.

I. Example one-tape Turing machine We specify the state set as “carry” and “no-carry”;
the start state as “carry”; the allowable input symbols as 0, 1,...,9 (note that “blank” should not be
an allowable input symbol); we’ll ignore other details that would be required in a full specification;
and specify the machine’s behavior as follows.

If reading a “0” and in state “carry”, write “1”, change to state “no-carry”, stay put.
If reading a “1” and in state “carry”, write “2”, change to state “no-carry”, stay put.
If reading a “2” and in state “carry”, write “3”, change to state “no-carry”, stay put.
...
If reading a “9” and in state “carry”, write “0”, stay in state “carry”, move right.
If reading a “blank” and in state “carry”, write “1”, change to state “no-carry”, stay put.

(In a way, we are allowing a completely blank tape to represent the input number zero even
though we have a symbol “0”, but for simplicity we have elected not to deal with this issue.)

II. Another example one-tape TM For brevity, we’ll skip most of the initial specification
that should be given. We’ll assume there’s a special marker “!” at the beginning of the tape. The
start state is “no-carry”.

end-of-tape rule:
If reading a “!” and in state “no-carry”, write “!”, change to state “carry”, move right.

carry rules:
If reading a “0” and in state “carry”, write “1”, change to state “no-carry”, move left.
If reading a “1” and in state “carry”, write “2”, change to state “no-carry”, move left.
If reading a “2” and in state “carry”, write “3”, change to state “no-carry”, move left.
...
If reading a “9” and in state “carry”, write “0”, stay in state “carry”, move right.
If reading a “blank” and in state “carry”, write “1”, change to state “no-carry”, move left.

return-to-tape-end rules:
If reading a “0” and in state “no-carry”, write “0”, stay in state “no-carry”, move left.
If reading a “1” and in state “no-carry”, write “1”, stay in state “no-carry”, move left.
If reading a “2” and in state “no-carry”, write “2”, stay in state “no-carry”, move left.
...
If reading a “9” and in state “no-carry”, write “9”, stay in state “no-carry”, move left.

III. Definition of TM function computation Let f : D → R be a function. A Turing
machine M computes f if, for every x ∈ D, when M is initialized with input x, it eventually halts
— ends up in a situation where no rule applies — with f(x) on its (output) tape.

We will also allow for encodings of x and f(x). For example, we might have a Turing machine
that, given n “hash marks” as input, returns n2 “hash marks”; we would then still say that the
Turing machine computes f(x) = x2, where x is a non-negative integer.

(OVER)



IV. Enumeration of “A-machines” We denote by M1,M2, . . . a infinite list (with no repeats)
of all TMs that take only sequences of A’s as input and produce sequences of A’s as output. The
list is such that given a (suitably encoded) number i, it is possible to recover the program for Mi

(i.e., there exists a Turing machine that does the job).
The sequences of A’s are intended to be encodings of non-negative integers. Thus, all computable

functions from the non-negative integers to the non-negative integers are represented in the list.

V. The halting function

h(Mi, j) =
{

1 (yes), if Mi would halt given j A’s as input
0 (no) if Mi would not halt given j A’s as input


