## 11/2/05: Lecture 29 aid - Statistical machine translation

Agenda: "Blank-slate" learning of correspondence tables (word-for-word dictionaries). Note: while the notation below may seem a bit complicated, the underlying ideas are intuitive.
Announcements: We will be using the same prelim seating arrangement as before. That is, to make it easier for the course staff to answer individual questions at a minimum of disturbance to other students, we ask that you sit as much as possible in alternate rows, starting with the row closest to the front. We would like to have a maximum of two people in the "no-mans-land" rows in between, sitting as much in the middle of the row as possible.
I. Data This consists of a set of mutual-translation sentence pairs. A realistic example would be

$$
\begin{gathered}
\text { Un program a été mis en application } \\
\text { vs. } \\
\text { And a program has been implemented }
\end{gathered}
$$

However, for simplicity, we will assume that each of the two sentences within a given pair have the same number of words in them, although the sentences within a given pair can have a different length than those in another pair.
II. Alignments The idea is to treat the target sentence as basically just a reordering of the source sentence.

Let " $s$ vs. $t$ " be a sentence pair, and let $n \geq 1$ be the length of sentence $s$. Let $s=s_{1} s_{2} \cdots s_{n}$, where each $s_{i}$ is a word (repeats allowed), and similarly let $t=t_{1} t_{2} \cdots t_{n}$. An alignment specifies for each position $i$ in the source sentence a position $a(i)$ in the target sentence, where the sentence-pair-specific function $a$ is one-to-one and onto (thus, each source position gets matched to exactly one target position and vice versa). We write this formally as $(1 \leftrightarrow a(1), 2 \leftrightarrow a(2), \ldots, n \leftrightarrow a(n))$. Under our (restricted) definition of alignment, there are $n!=n \times(n-1) \times(n-2) \times \cdots 2 \times 1$ alignments for a sentence pair in which each of the two component sentences has length $n$.
III. Example alignments Here is a graphical depiction of two out of the 120 possible alignments for the sentence pair "la maison bleue est bleue vs. the blue house is blue".


「A11


「A21

Formally, we would denote [A1] by $(1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 2,4 \leftrightarrow 4,5 \leftrightarrow 5)$.

## IV. Notation

- For a sentence pair $p$, let $\operatorname{Aligns}(p)$ be the set of all possible alignments of the two sentences in $p$, and let NumAligns $(p)$ be the size of this set.
- Let Contains $(s \leftrightarrow t)$ be the set of all alignments $A$ (across all sentence pairs) that contain a position match $i \leftrightarrow j$ where the $i^{t h}$ source word was $s$ and the $j^{t h}$ target word was $t$. In the example above, alignment [A1] is in Contains(maison $\leftrightarrow$ house) but [A2] isn't.
- Let freq $(s \leftrightarrow t, A)$ be the number of times we have the source word $s$ "matched" to the target word $t$ in alignment $A$. In our example above, we have freq $($ bleue $\leftrightarrow b l u e,[A 1])=2$.
V. An iterative learning algorithm for MT Inspired by IBM's Candide system from the 80s and 90s.

1. Initialization: For every sentence pair $p$, for every alignment $A$ of $p$, set $\operatorname{awt}(A)=1 /(\operatorname{NumAligns}(p))$.
2. Repeat the following steps in order until no "significant" change:
3. Update translation weights: For every source/target word pair $(s, t)$, change $\operatorname{tr}(s \rightarrow t)$ to

$$
\sum_{A} \text { in Contains }(s \leftrightarrow t) \text { freq }(s \leftrightarrow t, A) \operatorname{awt}(A) .
$$

4. Sum-normalize translation weights: for each source word $s$, compute norm ${ }_{s}=\sum_{t^{\prime}} \operatorname{tr}\left(s \rightarrow t^{\prime}\right)$; then, change each $\operatorname{tr}(s \rightarrow t)$ to $\operatorname{tr}(s \rightarrow t) /$ norm $_{s}$.
5. Update alignment weights: For every alignment $A=(1 \leftrightarrow a(1) ; 2 \leftrightarrow a(2) ; \cdots ; \ell \leftrightarrow a(\ell))$, change $\operatorname{awt}(A)$ to $\operatorname{tr}\left(s_{1} \rightarrow t_{a(1)}\right) \times \operatorname{tr}\left(s_{2} \rightarrow t_{a(2)}\right) \cdots \times \operatorname{tr}\left(s_{\ell} \rightarrow t_{a(\ell)}\right)$ (note that $\ell$ can be different for different $A$ ).
6. Sum-normalize alignment weights: For each pair $p$, compute norm $_{p}=\sum_{A^{\prime} \in \operatorname{Aligns}(p)}$ awt $\left(A^{\prime}\right)$; then, for every $A$ in $\operatorname{Aligns}(p)$, change $\operatorname{awt}(A)$ to $\operatorname{awt}(A) / \operatorname{norm}_{p}$.

Note that translation weights are normalized across all the data, whereas alignment weights are normalized with respect to a given sentence pair.
VI. Example partial execution Suppose we have two sentence pairs, $p_{1}=$ "chat bleu vs. blue cat" and $p_{2}=$ "chat vs. cat". This yields three alignments:

$$
\begin{aligned}
& A_{1}=(1 \leftrightarrow 1 ; 2 \leftrightarrow 2) \quad \text { (so chat aligned to blue in } p_{1} \text { ) } \\
& \left.A_{1}^{\prime}=(1 \leftrightarrow 2 ; 2 \leftrightarrow 1) \quad \text { (so chat aligned to cat in } p_{1}\right) \\
& A_{2}=(1 \leftrightarrow 1) \quad \text { (only one possible choice) }
\end{aligned}
$$

|  |  | $\operatorname{awt}\left(A_{1}\right)$ | $\operatorname{awt}\left(A_{1}^{\prime}\right)$ | $\operatorname{awt}\left(A_{2}\right)$ | $\operatorname{tr}($ chat $\rightarrow$ blue $)$ | $\operatorname{tr}($ chat $\rightarrow$ cat $)$ | $\operatorname{tr}($ bleu $\rightarrow$ blue $)$ | $\operatorname{tr}($ bleu $\rightarrow$ cat $)$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| a. | Init | $1 / 2$ | $1 / 2$ | 1 | - | - | - |  |
| b. | Up-tr | $"$ | $"$ | $"$ | $1 / 2$ | $3 / 2$ | $1 / 2$ | $1 / 2$ |
| c. | SNorm-tr | $"$ | $"$ | $"$ | $1 / 4$ | $3 / 4$ | $"$ | $1 / 2$ |
| d. | Update-a | $1 / 8$ | $3 / 8$ | $3 / 4$ | $"$ | $"$ | $"$ | " |
| e. | SNorm-a | $1 / 4$ | $3 / 4$ | 1 | $"$ | $7 / 4$ | " | $3 / 4$ |
| f. | Update-tr | $"$ | $"$ | $"$ | $1 / 4$ | $3 / 8$ | $3 / 4$ | $1 / 4$ |
| g. | Snorm-tr | $"$ | $"$ | $"$ | $1 / 8$ | $1 / 4$ |  |  |

