
Computation, Information, and Intelligence (COMS/ENGRI/INFO/COGST 172), Fall 2005
9/19/05: Lecture 11 aid – The perceptron convergence theorem

Agenda: Restrictions on the on-line perceptron-learning setting; a “one-sided” version of Rosen-
blatt’s perceptron learning algorithm; a corresponding version of the perceptron convergence the-
orem.

I. Reminders Recall from the lecture 10 aid of 9/16/05 that we use −→x (i) to denote the ith

example presented by the oracle, and that positive instances are those with label +1, whereas
negative instances are those with label -1. Recall from the lecture 9 aid (9/14/05) that: the inner
product distributes in the expected way; the length of a vector −→v can be computed as

√−→v · −→v ;
vector addition and subtraction is component-wise; and that the cosine between two vectors is the
inner product of the two divided by their respective lengths.

II. Restrictions and/or simplifications we impose More general versions of these restrictions
can also be considered.

1. The one-zero consistency condition: All the labeled examples turn out to be consistent with
some perceptron function f−→w∞

,T∞ where length (−→w∞) = 1, T∞ = 0.

2. The length restriction: For all i, length
(−→x (i)

)
= 1.

3. The gap condition1: There is a g > 0 such that for all −→x (i) and the −→w∞ specified above, we
have that −→w∞ · −→x (i) ≥ g.

Here is what all this looks like in two dimensions:
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1The real but (slightly) harder to work with version of this condition is “double-sided”, requiring only that
|−→w∞ · −→x (i)| ≥ g. This corresponds to having a gap, or margin, between the positive and negative examples, and
eliminates “cheating” solutions (such as setting the weight vector to all-zeroes always) on the part of the learner.
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III. The perceptron learning algorithm This is a “one-sided” version of the algorithm
Rosenblatt proposed.

1) Set −→w (0) to all zeroes.
2) For each example −→x (i) (i increasing from 1 on),
3) If −→w (i−1) · −→x (i) ≤ 0,
4) set −→w (i) to −→w (i−1) +−→x (i) (“update”);
5) otherwise, set −→w (i) to −→w (i−1) (“no change”).

IV. Outline of the proof of (our version of) the perceptron convergence theorem
Given all the constraints we have about the oracle and learner,

• Use the cosine function to measure how “close” successive hypothesis vectors are to −→w∞.
Observe that it takes the form N/D (numerator over denominator), and that we can think of
it as “starting” at 0 = 0/

√
1.

• Show that at each update of the perceptron learning algorithm, i.e., where −→w (i) is different
from −→w (i−1), the cosine increases by a non-negligible amount:

– N increases by at least g, the gap quantity.

– The square of D increases by at most 1.

Hence, after t updates, the cosine must be at least
√

tg.

• Since cosines can’t get bigger than one, we get that t can be at most 1/g2, which, since g > 0,
implies only a finite number of updates, and hence a finite number of mistakes, gets made.


