Computation, Information, and Intelligence (COMS/ENGRI/INFO/COGST 172), Fall 2005 9/19/05: Lecture 11 aid – The perceptron convergence theorem

Agenda: Restrictions on the on-line perceptron-learning setting; a "one-sided" version of Rosenblatt's perceptron learning algorithm; a corresponding version of the perceptron convergence theorem.

I. Reminders Recall from the lecture 10 aid of 9/16/05 that we use $\overrightarrow{x}^{(i)}$ to denote the i^{th} example presented by the oracle, and that *positive* instances are those with label +1, whereas *negative* instances are those with label -1. Recall from the lecture 9 aid (9/14/05) that: the inner product distributes in the expected way; the length of a vector \overrightarrow{v} can be computed as $\sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$; vector addition and subtraction is component-wise; and that the cosine between two vectors is the inner product of the two divided by their respective lengths.

II. Restrictions and/or simplifications we impose More general versions of these restrictions can also be considered.

- 1. The one-zero consistency condition: All the labeled examples turn out to be consistent with some perceptron function $f_{\overrightarrow{w}} \sim T_{T^{\infty}}$ where length $(\overrightarrow{w}) = 1, T^{\infty} = 0$.
- 2. The length restriction: For all i, length $\left(\overrightarrow{x}^{(i)}\right) = 1$.
- 3. The gap condition¹: There is a g > 0 such that for all $\overrightarrow{x}^{(i)}$ and the $\overrightarrow{w}^{\infty}$ specified above, we have that $\overrightarrow{w}^{\infty} \cdot \overrightarrow{x}^{(i)} \ge g$.

Here is what all this looks like in two dimensions:

¹The real but (slightly) harder to work with version of this condition is "double-sided", requiring only that $|\overline{w}^{\infty} \cdot \overline{x}^{(i)}| \geq g$. This corresponds to having a gap, or *margin*, between the positive and negative examples, and eliminates "cheating" solutions (such as setting the weight vector to all-zeroes always) on the part of the learner.

III. The perceptron learning algorithm This is a "one-sided" version of the algorithm Rosenblatt proposed.

1) Set $\overline{w}^{(0)}$ to all zeroes.

4)

- 2) For each example $\overrightarrow{x}^{(i)}$ (*i* increasing from 1 on),
- 3) If $\overrightarrow{w}^{(i-1)} \cdot \overrightarrow{x}^{(i)} \le 0$,
 - set $\overrightarrow{w}^{(i)}$ to $\overrightarrow{w}^{(i-1)} + \overrightarrow{x}^{(i)}$ ("update");
- 5) otherwise, set $\overrightarrow{w}^{(i)}$ to $\overrightarrow{w}^{(i-1)}$ ("no change").

IV. Outline of the proof of (our version of) the perceptron convergence theorem Given all the constraints we have about the oracle and learner,

- Use the cosine function to measure how "close" successive hypothesis vectors are to \overline{w}^{∞} . Observe that it takes the form N/D (numerator over denominator), and that we can think of it as "starting" at $0 = 0/\sqrt{1}$.
- Show that at each *update* of the perceptron learning algorithm, i.e., where $\overline{w}^{(i)}$ is different from $\overline{w}^{(i-1)}$, the cosine increases by a non-negligible amount:
 - N increases by *at least g*, the *gap* quantity.
 - The square of D increases by at most 1.

Hence, after t updates, the cosine must be at least \sqrt{tg} .

• Since cosines can't get bigger than one, we get that t can be at most $1/g^2$, which, since g > 0, implies only a finite number of updates, and hence a finite number of mistakes, gets made.