

DSFA Spring 2019

#### Lecture 20

Center and Spread

- Project 2: Final submission April 16
- Prelim 2: In-class. Tuesday, April 16
  - Sample questions will be posted
  - Study guide and personal cheat sheet
  - Covers material in chapters 9 through 11
- Homework 7 posted on Tuesday

### Questions

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?

How is sample size related to the accuracy of an estimate?



# The Average (or Mean)

#### Data: 2, 3, 3, 9 Average = (2+3+3+9)/4 = 4.25

- Need not be a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data

## **Discussion Question**

Create a data set that has this histogram. (You can do it with a short list of whole numbers.)

What are its median and mean?



### **Discussion Question**

Are the medians of these two distributions the same or different? Are the means the same or different? If you say "different," then say which one is bigger.



# **Comparing Mean and Median**

- **Mean:** Balance point of the histogram
- **Median:** Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

### **Discussion Question**



#### **Standard Deviation**

# **Defining Variability**

Plan A: "biggest value - smallest value"

• Doesn't tell us much about the shape of the distribution

(Demo)

#### Plan B:

- Measure variability around the mean
- Need to figure out a way to quantify this

# How Far from the Average?

- Standard deviation (SD) measures roughly how far the data are from their average
- SD = root mean square of deviations from average
  Example:

Sample: 2, 3, 3, 9

Average/Mean: 4.25

$$SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

• SD has the same units as the data

# Why Use the SD?

There are two main reasons.

#### • The first reason:

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

#### • The second reason:

Coming up in the next lecture.

### **Chebyshev's Inequality**

# **The Mathematician's Name**

- Chebyshev
- Chebychev
- Chebishov
- Čebyšev
- Tchebichev
- Tchebicheff
- Tschebyscheff
- Tschebyschew
- Чебышёв

# How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

#### **Chebyshev's Inequality**

No matter what the shape of the distribution, the proportion of values in the range "average  $\pm z$  SDs" is

at least 1 -  $1/z^2$ 

## **Chebyshev's Bounds**

| Range           | Proportion                 |
|-----------------|----------------------------|
| average ± 2 SDs | at least 1 - 1/4 (75%)     |
| average ± 3 SDs | at least 1 - 1/9 (88.888%) |
| average ± 4 SDs | at least 1 - 1/16 (93.75%) |
| average ± 5 SDs | at least 1 - 1/25 (96%)    |

# No matter what the distribution looks like (Demo)

#### **Standard Units**

# **Standard Units**

- How many SDs above average?
- z = (value mean)/SD
  - Negative z: value below average
  - Positive z: value above average
  - z=0: value equal to average
- When values are in standard units: average = 0, SD = 1
- Chebyshev: At least 96% of the values of z are between
  -5 and 5 (Demo)