燭 0 osf

Lecture 19

Spring 2019
Confidence Intervals

Announcements

- Project 2: Part 1 due today
- Project 2: Final submission April 16
- Prelim 2: In-class. Tuesday, April 16 - Sample questions will be posted
- Study guide and personal cheat sheet

Percentiles

Computing Percentiles

The 80th percentile of a set of numbers is the smallest value in the sample that is at least as large as 80% of the sample

$$
\text { For } s=[1,7,3,9,5], \text { percentile }(80, s) \text { is } 7
$$

The 80th percentile is ordered element 4: $(80 / 100)$ * 5

```
Percentile Size of set
```

For a percentile that does not exactly correspond to an element, take the next greater element instead

The percentile Function

- The p th percentile is the smallest value at least as large as $p \%$ of the values in the sample
- Function in the datascience module: percentile(p, values)
- p is between 0 and 100
- Returns the pth percentile of the array

Discussion Question

Which are True, when $s=[1,7,3,9,5] ?$

$$
\begin{aligned}
& \text { percentile }(10, s)=0 \\
& \text { percentile }(39, s)==\text { percentile }(40, s) \\
& \text { percentile }(40, s)==\text { percentile }(41, s) \\
& \text { percentile }(50, s)=5 \\
& (D e m o)
\end{aligned}
$$

Estimation (Review)

Inference: Estimation

- What is the value of a population parameter?
- If you have a census (that is, the whole population):
- Just calculate the parameter and you're done
- If you don't have a census:
- Take a random sample from the population
- Use a statistic as an estimate of the parameter

Variability of the Estimate

- One sample \rightarrow One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Main question:
- How different could the estimate have been?
- The variability of the estimate tells us something about how accurate the estimate is:
estimate = parameter + error
(Demo)

Where to Get Another Sample?

- One sample \rightarrow One estimate
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
- No time, no money
- Stuck?

The Bootstrap

The Bootstrap

- A technique for simulating repeated random sampling
- All that we have is the original sample
- ... which is large and random
- Therefore, it probably resembles the population
- So we sample at random from the original sample!

Repeated Sampling

population

Variation from one sample to another
samples

The Bootstrap

population

Variation from one resample to another

resamples

95\% Confidence Interval

- Interval of estimates of a parameter
- Based on random sampling
- Confidence level: typically 95\%
- Could be any percent between 0 and 100
- Bigger means wider intervals
- The interval contains the parameter about 95% of the time in repeated sampling

(Demo)

Can You Use a CI Like This?

By our calculation, an approximate 95\% confidence interval for the average age of the mothers in the population is $(26.9,27.6)$ years.

True or False:

- About 95% of the mothers in the population were between 26.9 years and 27.6 years old.

Answer: False. We're estimating that their average age is in this interval.

Is This What a CI Means?

Based on our sample, an approximate 95% confidence interval for the average age of the mothers in the population is $(26.9,27.6)$ years.

True or False:

- There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer: False. It's not a probability. Either the population average is in the interval or it isn't!

Confidence Interval Tests

Using a Cl for Testing

- Null hypothesis: Population mean $=\boldsymbol{x}$
- Alternative hypothesis: Population mean $\neq \boldsymbol{x}$
- Cutoff for P-value: $p \%$
- Method:
- Construct a (100-p)\% confidence interval for the population statistic
- If x is not in the interval, reject the null
- If x is in the interval, can't reject the null

Average

The Average

Data: 2, 3, 3, 9 Average $=(2+3+3+9) / 4=4.25$

- Not a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data

Discussion Question

Properties of the Mean

- Balance point of the histogram
- Not the "halfway point" of the data; the mean is not the median...
- Unless the distribution is symmetric about a point, then that point is both the average and the median
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail

Key to Bootstrap/Resampling

- From the original sample,
- draw at random
- with replacement
- as many values as the original sample contained
- The size of the new sample has to be the same as the original one, so that the two estimates are comparable
(Demo)

