

DSFA Spring 2019

Lecture 11

Comparison and Control Statements

The Monty Hall Problem

Monty Hall Problem

- A. Switch?
- B. Stay?
- C. Doesn't matter

Comparison

Comparison Operators

The result of a comparison expression is a **bool** value

George Boole

The Laws of Thought (1854)

No general method for the solution of questions in the theory of probabilities can be established which does not explicitly recognise, not only the special numerical bases of the science, but also those **universal laws of thought which are the basis of all reasoning**, and which, whatever they may be as to their essence, are at least mathematical as to their form.

Combining Comparisons

Boolean operators can be applied to **bool** values

a = True b = False Evaluate to True not b a or b a and not b a and b not (a or b) b and b Evaluate to False (Demo)

Aggregating Comparisons

Summing an array or list of bool values will count the True values only.

```
1 + 0 + 1 == 2
True + False + True == 2
sum([1 , 0 , 1 ]) == 2
sum([True, False, True]) == 2
(Demo)
```

Random Selection

Random Selection

np.random.choice

- Selects at random
- with replacement
- from an array
- a specified number of times

Discussion Question

d6 = np.arange(1, 6+1)

What results from evaluating the following 2 expressions? Are they the same? Do they describe the same process?

np.random.choice(d6, 1000) + np.random.choice(d6, 1000)

2 * np.random.choice(d6, 1000)

Control Statements

Control Statements

These statements *control* the sequence of computations that are performed in a program

- The keywords **if** and **for** begin control statements
- The purpose of **if** is to define computations that can choose different behaviors
- The purpose of **for** is to perform a computation for every element in a collection

(Demo)