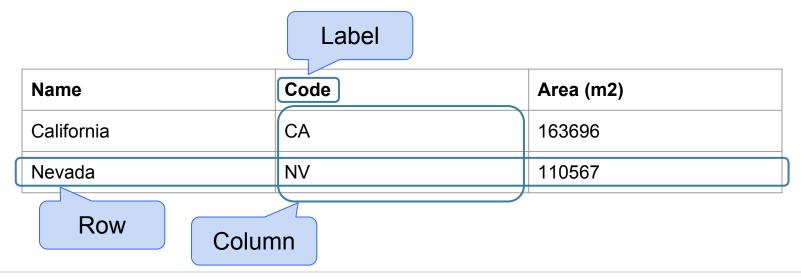


DSFA Spring 2019

Lecture 5

Census & Charts


Announcements

• Homework 2 due Thursday 2/7

Tables Review

Table Structure

- A Table is a sequence of labeled columns
- Labels are strings
- Columns are arrays, all with the same length

Table Methods

- Creating and extending tables:
 - Table().with_columns and Table.read_table
- Finding the size: t.num_rows and t.num_columns
- Referring to columns: labels, relabeling, and indices
 - t.labels and t.relabeled; column indices start at 0
- Accessing data in a column
 - t.column takes a label or index and returns an array
- Using array methods to work with data in columns
 - **a.item(row_index)** returns a value in an array
 - a.sum(), a.min(), a.max() Or sum(a), min(a), max(a)
- Creating new tables containing some of the original columns:
 - o select, drop

Manipulating Rows

- t.sort(column) sorts the rows in increasing order
- t.take(row_numbers) keeps the numbered rows
 Each row has an index, starting at 0
- t.where(column, are.condition) keeps all rows for which a column's value satisfies a condition
- t.where(column, value) keeps all rows for which a column's value equals some particular value
- t.with_row makes a new table that has another row

Discussion Questions

The table **nba** has columns **NAME**, **POSITION**, and **SALARY**.

a) Create an array containing the names of all point guards (PG) who make more than \$15M/year

nba.where(1, 'PG').where(2, are.above(15)).column(0)

b) After evaluating these two expressions in order, what's the result of the second one?

nba.with_row(['Samosa', 'Mascot', 100])
nba.where('NAME', are.containing('Samo'))

Census Data

The Decennial Census

- Every ten years, the Census Bureau counts how many people there are in the U.S.
- In between censuses, the Bureau estimates how many people there are each year.
- Article 1, Section 2 of the Constitution:
 - "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers ..."

Analyzing Census Data

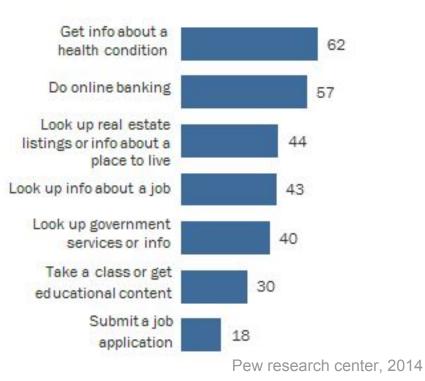
Leads to the discovery of interesting features and trends in the population

Census Table Description

- Values have column-dependent interpretations
 - The SEX column: 1 is *Male*, 2 is *Female*
 - The POPESTIMATE2010 column: 7/1/2010 estimate
- In this table, some rows are sums of other rows
 - The SEX column: 0 is *Total* (of *Male* + *Female*)
 - The AGE column: 999 is *Total* of all ages
- Numeric codes are often used for storage efficiency
- Values in a column have the same type, but are not necessarily comparable (AGE 12 vs AGE 999)

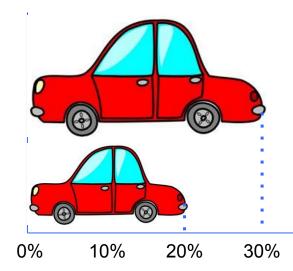
Data Visualization

Discussion Question


Which of the following questions can be answered by this chart?

Among survey responders...

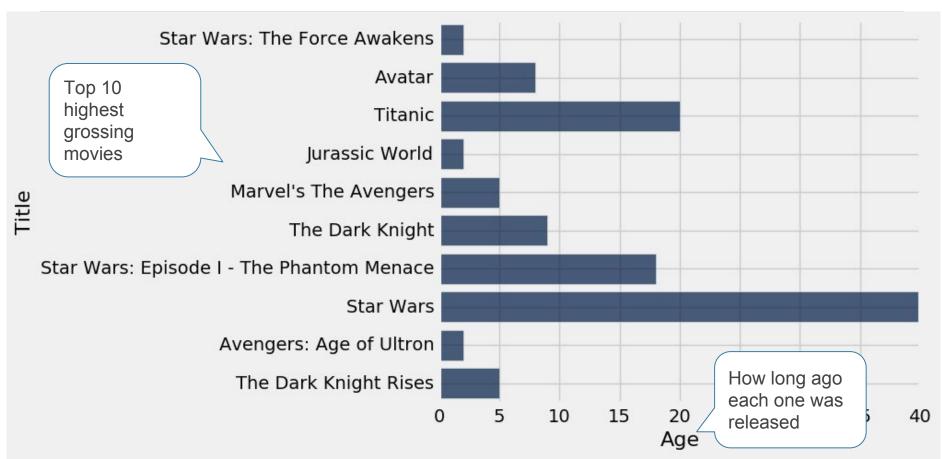
- What proportion did **not** use their phone for online banking?
- What proportion either used their phone for online banking or to look up real estate listings?
- Did everyone use their phone for at least one of these activities?
- Did anyone use their phone for both online banking and real estate?


More than Half of Smartphone Owners Have Used Their Phone to get Health Information, do Online Banking

% of smartphone owners who have used their phone to do the following in the last year

Area Principle

Areas should be proportional to the values they represent


In 2013,

30% of accidental deaths of males were due to automobile accidents

20% of accidental deaths of females were due to automobile accidents

Numerical Data

How Do You Generate This Chart?

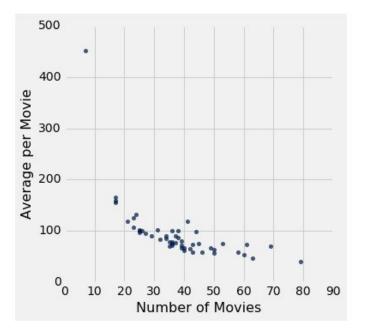
Types of Data

All values in a column should be both the same type **and** be comparable to each other in some way

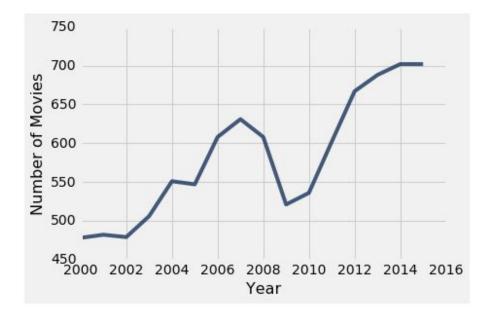
- **Numerical** Each value is from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful
- **Categorical** Each value is from a fixed inventory
 - May or may not have an ordering
 - Categories are the same or different

"Numerical" Data

Just because the values are numbers, doesn't mean the variable is numerical


- Census example had numerical SEX code (0, 1, and 2)
- It doesn't make sense to perform arithmetic on these "numbers", e.g. 1 - 0 or (0+1+2)/3 are nonsense here
- The variable SEX is still categorical, even though numbers were used for the categories

Terminology


- Individuals: those whose features are recorded
- Variables: features; these vary across individuals
- Variables have different values
- Values can be **numerical**, or **categorical**, or of many other types
- **Distribution**: For each different value of the variable, the frequency of individuals that have that value
- Frequency is measured in counts. Later we will use proportions or percents.

Plotting Two Numerical Variables

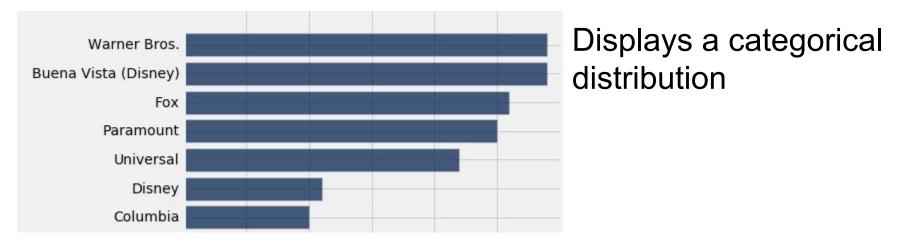
Scatter plot: scatter

Line graph: plot

Categorical Data

Bar Charts of Counts

Distributions:


- The distribution of a variable (a column) describes the frequency of its different values
- The group method counts the number of rows for each value in a column

Bar charts can display the distribution of categorical values

- Proportion of how many US residents are male or female
- Count of how many top movies were released by each studio

Categorical Distributions

bar chart: **barh**

(But when the values of the variable have a rank ordering, or fixed sizes relative to each other, more care might be needed.)