Supervised Learning in Data Science

Data Analysis and Policy

- Google wants to hire new software engineers that increase productivity as much as possible. It collects the following data on 2017 hires:
- Productivity increase contribution
- Cumulative college GPA
 Number of undergraduate internships held
- Extracurricular activity participation
 Number of CS courses taken
- What can Google do with this data to inform this year's hiring decisions?

Data Analysis and Policy

- Causal Inference What effect does a specific input variable have on the output?
- Relevance Which input variables actually matter in determining the output?
- Prediction Knowing all the input values, what can we expect the output to be?
 - Primary goal of supervised learning

Supervised Learning

- Have a training data set, know what output given inputs should look
- Want to teach computer to give correct output given inputs

The Regression Problem

• Theory posits that some quantitative output is a function of input and random error:

$$Y = f(X) + \epsilon$$

• Given a set of observations $(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}), \dots, (X^{(n)}, Y^{(n)})$ try to create predictor function f(X) which produces an output as close to Y as possible on a new input value of X

Linear Predictor Function

• With inputs $X_1 \dots X_k$, actual output Y, linear predictor function takes the form

$$\widehat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \dots + \widehat{\beta_k} X_k$$

where $\widehat{eta_0} \ ... \, \widehat{eta_k}$ are user determined parameters

• Single variable case:

$$\widehat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$$

• Note: predicted output $\hat{Y} := \hat{f}(X)$

Linear Predictor Function

• E.g. income based on years of education

$$Inc = f(YOE) + \, \epsilon$$

$$\widehat{Inc} = \widehat{\beta_0} + \widehat{\beta_1} YOE$$

Cost Function

- How to evaluate performance of \hat{f} i.e. measure goodness-of-fit? Mean squared error
- $\bullet \text{ Cost function: } \mathsf{C}\big(\widehat{\beta_0},\widehat{\beta_1}\big) = \frac{1}{2n} \sum_{i=1}^n \! \left(\widehat{f}\!\left(X^{(i)}\right) Y^{(i)}\right)^2$
- Goal: choose $\widehat{\beta_0}$, $\widehat{\beta_1}$ to minimize $C(\widehat{\beta_0},\widehat{\beta_1})$, maximize goodness of fit

Gradient Descent

How to "learn" from cost function and reduce it? Correction factors

•
$$\delta_0 = \frac{1}{n} \sum_{i=1}^{n} (\hat{f}(X^{(i)}) - Y^{(i)})$$

•
$$\delta_1 = \frac{1}{n} \sum_{i=1}^{n} (\hat{f}(X^{(i)}) - Y^{(i)}) X^{(i)}$$

• Reassign $\widehat{\beta_0}$, $\widehat{\beta_1}$ such that:

$$\widehat{\beta_0} := \widehat{\beta_0} - \alpha \ \delta_0$$

$$\widehat{\beta_1} := \widehat{\beta_1} - \alpha \ \delta_1$$

+ α is the learning rate of the gradient descent algorithm, user determined

Too slow if too small; could overshoot if too large

Gradient Descent

- Algorithm:
 - 1. Initialize $\widehat{\beta_0}$, $\widehat{\beta_1}$
 - 2. Calculate δ_0, δ_1 and for j=0,1 reassign $\widehat{\beta_j}\coloneqq \widehat{\beta_j} \alpha \delta_j$
 - 3. Repeat step 2 until stopping condition reached
- Result: $\hat{f}(X)$ which predicts Y with minimal cost!

Gradient Descent Example

$$\bullet \ TS := \left\{ \left(X^{(1)} = 1, Y^{(1)} = 1 \right), \left(X^{(2)} = 2, Y^{(2)} = 2 \right), \left(X^{(3)} = 3, Y^{(3)} = 3 \right) \right\}$$

• Initialize $\widehat{\beta_0}=0$, $\widehat{\beta_1}=0$, such that $\widehat{f}(X)=0+0X$

+ $\widehat{eta_0}$ already optimal, just optimize by $\widehat{eta_1}$

• $C(\widehat{\beta_0}, \widehat{\beta_1}) = 2.3333$

• Let $\alpha = 0.1$

δ₁ = -4.6667

• $\widehat{\beta_1} := 0 - 0.1 * (-4.6667) = 0.4667$

Gradient Descent Example

•
$$TS := \{(X^{(1)} = 1, Y^{(1)} = 1), (X^{(2)} = 2, Y^{(2)} = 2), (X^{(3)} = 3, Y^{(3)} = 3)\}$$

- $C(\widehat{\beta_0}, \widehat{\beta_1}) = 0.6636$
- Let $\alpha=0.1$
- $\delta_1 = -2.4887$
- $\widehat{\beta_1} := 0.4667 0.1 * (-2.4887) = 0.7156$

Gradient Descent Example

•
$$TS := \{ (X^{(1)} = 1, Y^{(1)} = 1), (X^{(2)} = 2, Y^{(2)} = 2), (X^{(3)} = 3, Y^{(3)} = 3) \}$$

•
$$C(\widehat{\beta_0}, \widehat{\beta_1}) = 0.1887$$

• Let $\alpha = 0.1$

•
$$\delta_1 = -1.3272$$

• $\widehat{\beta_1} := .7156 - 0.1 * (-1.3272) = 0.8483$

Solving for a Multivariate Predictor

- Linear predictor function: $\widehat{f}(X_1,X_2\dots,X_k)=\widehat{\beta_0}+\widehat{\beta_1}X_1+\widehat{\beta_2}X_2+\dots+\widehat{\beta_k}X_k$
- Goal: minimize $C(\widehat{\beta_0}, \widehat{\beta_1}, \widehat{\beta_2}, \dots, \widehat{\beta_k}) = \frac{1}{2n} \sum_{i=1}^n (\widehat{Y}^{(i)} Y^{(i)})^2$
- δ_0 unchanged, $=\frac{1}{n}\sum_{i=1}^n (\hat{Y}^{(i)} Y^{(i)})$
- For $j=1,2\dots,k$, $\delta_j = \frac{1}{n} \sum_{i=1}^n (\hat{Y}^{(i)} Y^{(i)}) X_j^{(i)}$

Solving for a Multivariate Predictor

- Algorithm:
 - 1. Initialize $\widehat{\beta_0}$, $\widehat{\beta_1}$, $\widehat{\beta_2}$..., $\widehat{\beta_k}$
 - 2. Calculate $\delta_0, \delta_1, \dots, \delta_k$ and for $j=0,1,\dots,k$ reassign $\widehat{\beta_j} \coloneqq \widehat{\beta_j} \alpha \delta_j$
 - 3. Repeat step 2 until stopping condition reached

Overfitting

- Occurs when estimation method adheres too closely to training data, picks up random noise and poorly expresses actual structure of data
- Can result from too many variables being used in linear regression model
 - E.g. If one is trying to predict an individuals income, birthday probably isn't relevant, but doesn't hurt to consider it

Omitted Variable Bias

- Occurs when important factors aren't considered in estimation method
 - $\bullet\,$ i.e. when relevant variables aren't included in linear regression model
- Results in certain variables being considered more or less important than they really are
 - E.g. if innate ability explains both years of education and income, education can act as a proxy for ability in absence of data on the latter, but will be weighted too highly

Bias in Data

- Occurs when training data set has structural differences from overall population
- E.g. if predicting height while only looking at schoolchildren, age is a highly descriptive variable; however, less relevant for overall population