
Introduction to Deep Learning

DL

2

Scientists See Promise in Deep-Learning Programs
John Markoff
November 23, 2012

Rich Rashid in Tianjin, October, 25, 2012

Impact of deep learning in speech
technology

7

……Facebook’s foray into deep learning sees it
following its competitors Google and Microsoft, which
have used the approach to impressive effect in the past
year. Google has hired and acquired leading talent in
the field (see “
10 Breakthrough Technologies 2013: Deep Learning”),
and last year created software that taught itself to
recognize cats and other objects by reviewing stills
from YouTube videos. The underlying deep learning
technology was later used to slash the error rate of
Google’s voice recognition services (see “
Google’s Virtual Brain Goes to Work”)….Researchers
at Microsoft have used deep learning to build a system
that translates speech from English to Mandarin
Chinese in real time (see “
Microsoft Brings Star Trek’s Voice Translator to Life”).
Chinese Web giant Baidu also recently established a
Silicon Valley research lab to work on deep learning.

September 20,
2013

8

9

10

11

12

Deep learning

So, 1. what exactly is deep learning ?

And, 2. why is it generally better than other methods
on image, speech and certain other types of data?

So, 1. what exactly is deep learning ?

And, 2. why is it generally better than other methods
on image, speech and certain other types of data?

The short answers
 1. ‘Deep Learning’ means using a neural network
 with several layers of nodes between input and output

 2. the series of layers between input & output do
 feature identification and processing in a series of stages,
 just as our brains seem to.

hmmm… OK, but:
 3. multilayer neural networks have been around
for
 25 years. What’s actually new?

hmmm… OK, but:
 3. multilayer neural networks have been around
for
 25 years. What’s actually new?
we have always had good algorithms for learning the
weights in networks with 1 hidden layer

but these algorithms are not good at learning the weights
for
networks with more hidden layers

what’s new is:
algorithms for training many-later networks

longer answers

1.  reminder/quick-explanation of how neural
network weights are learned;

2.  the idea of unsupervised feature learning
(why ‘intermediate features’ are important
for difficult classification tasks, and how NNs
seem to naturally learn them)

3.  The ‘breakthrough’ – the simple trick for
training Deep neural networks

W1

W2

W3

f(x)

1.4

-2.5

-0.06

2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x = -0.06×2.7 + 2.5×8.6 + 1.4×0.002 = 21.34

A dataset
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Training the neural network
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Initialise with random weights

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Present a training pattern

1.4

2.7

1.9

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Feed it through to get output

1.4

2.7 0.8

1.9

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Compare with target output

1.4

2.7 0.8
 0
1.9 error 0.8

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Adjust weights based on error

1.4

2.7 0.8
 0
1.9 error 0.8

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Present a training pattern

6.4

2.8

1.7

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Feed it through to get output

6.4

2.8 0.9

1.7

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Compare with target output

6.4

2.8 0.9

 1
1.7 error -0.1

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Adjust weights based on error

6.4

2.8 0.9

 1
1.7 error -0.1

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

And so on ….

6.4

2.8 0.9

 1
1.7 error -0.1

Repeat this thousands, maybe millions of times – each time
taking a random training instance, and making slight
weight adjustments
 Algorithms for weight adjustment are designed to make
changes that will reduce the error

The decision boundary perspective…

Initial random weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Eventually ….

The point I am trying to make

•  weight-learning algorithms for NNs are dumb

•  they work by making thousands and thousands of tiny
adjustments, each making the network do better at the most
recent pattern, but perhaps a little worse on many others

•  but, by dumb luck, eventually this tends to be good enough to
 learn effective classifiers for many real applications

Some other ‘by the way’ points

If f(x) is linear, the NN can only draw straight decision
boundaries (even if there are many layers of units)

Some other ‘by the way’ points

NNs use nonlinear f(x) so they
can draw complex boundaries,
but keep the data unchanged

Some other ‘by the way’ points

NNs use nonlinear f(x) so they SVMs only draw straight lines,
can draw complex boundaries, but they transform the data first
but keep the data unchanged in a way that makes that OK

Feature
detectors

 what is this
unit doing?

Hidden layer units become
self-organised feature detectors

…

1

63

 1 5 10 15 20 25 …

strong weight

low/zero weight

What does this unit detect?

…

1

63

 1 5 10 15 20 25 …

strong weight

low/zero weight

What does this unit detect?

…

1

63

 1 5 10 15 20 25 …

strong weight

low/zero weight

it will send strong signal for a horizontal
line in the top row, ignoring everywhere else

What does this unit detect?

…

1

63

 1 5 10 15 20 25 …

strong weight

low/zero weight

What does this unit detect?

…

1

63

 1 5 10 15 20 25 …

Strong weight

low/zero weight

Strong signal for a dark area in the top left
corner

What features might you expect a good NN
to learn, when trained with data like this?

63

1

vertical lines

63

1

Horizontal lines

63

1

Small circles

63

1

Small circles

But what about position invariance ???
our example unit detectors were tied to
specific parts of the image

successive layers can learn higher-level features …

 etc … detect lines in

Specific positions

 v

Higher level detetors
(horizontal line,
“RHS vertical lune”
“upper loop”, etc…

etc …

successive layers can learn higher-level features …

 etc … detect lines in

Specific positions

 v

Higher level detetors
(horizontal line,
“RHS vertical lune”
“upper loop”, etc…

etc …

 What does this unit detect?

So: multiple layers make sense

So: multiple layers make sense

Your brain works that way

So: multiple layers make sense

Many-layer neural network architectures should be capable of learning the
true underlying features and ‘feature logic’, and therefore generalise very
well …

But, until very recently, our weight-learning
algorithms simply did not work on multi-layer
architectures

Along came deep learning …

The new way to train multi-layer NNs…

The new way to train multi-layer NNs…

Train this layer first

The new way to train multi-layer NNs…

Train this layer first

then this layer

The new way to train multi-layer NNs…

Train this layer first

then this layer

then this layer

The new way to train multi-layer NNs…

Train this layer first

then this layer

then this layer
then this layer

The new way to train multi-layer NNs…

Train this layer first

then this layer

then this layer
then this layer

finally this layer

The new way to train multi-layer NNs…

EACH of the (non-output) layers is trained to

be an auto-encoder
Basically, it is forced to learn good
features that describe what comes from
the previous layer

intermediate layers are each trained to be
auto encoders (or similar)

Final layer trained to predict class based
on outputs from previous layers

And that’s that

•  That’s the basic idea
•  There are many many types of deep

learning,
•  different kinds of autoencoder, variations

on architectures and training algorithms,
etc…

•  Very fast growing area …

an auto-encoder is trained, with an absolutely
standard weight-adjustment algorithm to reproduce

the input

an auto-encoder is trained, with an absolutely
standard weight-adjustment algorithm to reproduce

the input

By making this happen with (many) fewer units than the
inputs, this forces the ‘hidden layer’ units to become good

feature detectors

