- Previous class:

- Color vectors - RGB
- I-dimensional array - vector
- Now:
- Play with image files
- 2-dimensional array-matrix

Creating a matrix

- Built-in functions: ones, zeros, rand
- E.g., zeros(2,3) gives a 2-by-3 matrix of 0s
- "Build" a matrix using square brackets, [], but the dimension must match up:
- [$x y]$ puts y to the right of x
- [$\mathrm{x} ; \mathrm{y}]$ puts y below x
- [403;5 I 9] creates the matrix

- [4 0 3; ones $(1,3)$] gives
-
- [4 0 3; ones(3, I)] doesn't work

2-d array: matrix

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,
mat (r, c) \qquad
refers to component in row r, column c of matrix mat
- Array index starts at I
- Rectangular: all rows have the same \#of columns
\% What will M be?
$\mathrm{M}=$ [ones $(1,3) ; 1: 4]$
$\begin{array}{lllll} & 1 & 1 & 1 & 0 \\ \mathrm{~A} & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll} & 1 & 1 & 1 \\ 1 & 2 & 3\end{array}$

C Error - M not created

What is [70c|l?

A Same as $\left[\begin{array}{lll}5 & 0 & 7\end{array}\right]$
B Same as [7; 0; 5]
C Same as [5; 0; 7]

What will A be?

```
A= [1 1 1]
A= [A'
A=[[llllllll
```

A 3-by-4 matrix
B 4-by-3 matrix
C vector of length 12
D Error

$$
\begin{aligned}
& \text { Working with a matrix: } \\
& \text { size and individual components } \\
& \begin{array}{c|c|c|c|c|c|}
\text { Given a matrix M } & 5 & -3 & 8.5 & 9 & 10 \\
\cline { 2 - 6 } & 52 & 81 & .5 & 7 & 2 \\
\cline { 2 - 6 } & & & & &
\end{array} \\
& \text { [nr, nc]= size(M) \% nr is \#of rows, } \\
& \text { \% nc is \#of columns } \\
& M(2,4)=1 \text {; } \\
& \operatorname{disp}(M(3,1)) \\
& \mathrm{M}(1, \mathrm{nc})=4 \text {; }
\end{aligned}
$$

Images can be encoded in different ways

- Common formats include
- JPEG: Joint Photographic Experts Group
- GIF: Graphics Interchange Format
- Data are compressed
- We will work with jpeg files:

- imread: read a .jpg file and convert it to a "normal numeric" array that we can work with
- imwrite: write an array into a .jpg file (compressed data)

Let's put a picture in a frame

- Read a grayscale jpeg file into a matrix P
P = imread(‘<filename>.jpg’);
- See the image represented by P imshow(P)
- Change the "edge pixels" into the frame color (grayscale) you want

Problem: produce a negative

Problem: produce a negative

- "Negative" is what we say, but all color values are positive numbers!
- Think in terms of the extremes, 0 and 255. Then the "negative" just means the opposite side.
- So 0 is the opposite of 255 ;

I ... 254;
5 ... 250;
30 ... 225;
x ... 255-x

A color picture is made up of RGB matrices

Operations on images amount to operations on matrices-good way to practice matrix manipulation!

LawSchool.jpg

LawSchoolMirror.jpg

Solution Framework

ı. Read LawSchool.jpg from memory and convert it into an array.
2. Manipulate the Array.
3. Convert the array to a jpg file and write it to memory.

```
Reading and writing jpg files
% Read jpg image and convert to
% a 3D array A
    A = imread('LawSchool.jpg');
% Write 3D array B to memory as
% a jpg image
    imwrite(B,'LawSchoolMirror.jpg')
```

```
% Make mirror image of A
[nr,nc,np]= size(A);
for r= 1:nr <12345
    #目臬隹
    for c= 1:nc
        B(r,c )=A(r,nc-c+1 );
    end
end
```



```
% Make mirror image of A
[nr,nc,np]= size(A);
for r= 1:nr
    for c= 1:nc
        for p= 1:np
            B(r,c,p)=A(r,nc-c+1,p);
        end
    end
end
```

Turn the white duck yellow！
－The duck＇s body and the image＇s background show some contrast．However，neither the duck＇s body nor the background has a uniform color
－Are the RGB values different enough for us to write a＂rule＂in the program to tell between the duck and the background？
－Check out the RGB values！

