
Designing Classes

Mini-Lecture 19

Invariants

• Properties of an attribute that must be true
• Works like a precondition:

§ If invariant satisfied, object works properly
§ If not satisfied, object is “corrupted”

• Examples:
§ Point3 class: all attributes must be floats
§ RGB class: all attributes must be ints in 0..255

• Purpose of the class specification
10/12/18 Classes 2

The Class Specification

class Worker(object):
"""An instance is a worker in an organization.

Instance has basic worker info, but no salary information.

ATTRIBUTES:
lname: Worker’s last name. [str]
ssn: Social security no. [int in 0..999999999]
boss: Worker's boss. [Worker, or None if no boss]

10/12/18 Classes 3

The Class Specification

class Worker(object):
"""An instance is a worker in an organization.

Instance has basic worker info, but no salary information.

ATTRIBUTES:
lname: Worker’s last name. [str]
ssn: Social security no. [int in 0..999999999]
boss: Worker's boss. [Worker, or None if no boss]

10/12/18 Classes 4

Description

Invariant

Short
summary

More
detail

Attribute
list

Attribute
Name

Initializing the Attributes of an Object (Folder)

• Creating a new Worker is a multi-step process:
§ w = Worker()
§ w.lname = 'White'
§ …

• Want to use something like
w = Worker('White', 1234, None)

§ Create a new Worker and assign attributes
§ lname to 'White', ssn to 1234, and boss to None

• Need a custom constructor
10/12/18 5

Instance is empty

Classes

Special Method: __init__

def __init__(self, n, s, b):
"""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.
self.lname = n
self.ssn = s
self.boss = b

10/12/18 Classes 6

w = Worker('Obama', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructor

Special Method: __init__

def __init__(self, n, s, b):
"""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.
self.lname = n
self.ssn = s
self.boss = b

10/12/18 Classes 7

w = Worker('Obama', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructordon’t forget self
two underscores

use self to assign attributes

Evaluating a Constructor Expression

Worker('Obama', 1234, None)

1. Creates a new object (folder)
of the class Worker
§ Instance is initially empty

2. Puts the folder into heap space
3. Executes the method __init__

§ Passes folder name to self
§ Passes other arguments in order
§ Executes the (assignment)

commands in initializer body
4. Returns the object (folder) name

10/12/18 Classes 8

id8

lname 'White'

ssn

boss

1234

None

Worker

Designing a Class

1. Think about what values you want in the set
§ What are the attributes? What values can they have?

2. Think about what operations you want
§ This often influences the previous question

• To make (1) precise: write a class invariant
§ Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
§ Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

10/6/17 Using Classes Effectively 9

Planning out a Class
class Time(object):

"""Instances represent times of day.
Instance Attributes:

hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: this time is noon or later."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

1010/6/17 Using Classes Effectively

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

10/6/17 Using Classes Effectively 11

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

self.hour = hour
self.min = min

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

10/6/17 Using Classes Effectively 12

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = self.hour + hours

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

?

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = (self.hour + hours +

self.min // 60)
self.min = self.min % 60
self.hour = self.hour % 24

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Role of Invariants and Preconditions

• They both serve two purposes
§ Help you think through your

plans in a disciplined way
§ Communicate to the user* how

they are allowed to use the class

• Provide the interface of the class
§ interface btw two programmers
§ interface btw parts of an app

• Important concept for making
large software systems
§ Will return to this idea later

* …who might well be you!

in•ter•face |ˈintərˌfās| noun

1. a point where two systems, subjects, orga-
nizations, etc., meet and interact : the
interface between accountancy & the law.

• chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its
air/liquid interface.

2. Computing a device or program enab-ling
a user to communicate with a computer.

• a device or program for connecting two
items of hardware or software so that
they can be operated jointly or
communicate with each other.

—The Oxford American Dictionary

