
Nested Lists

Mini-Lecture 16

Nested Lists

• Lists can hold any object
• Lists are themselves objects
• Therefore lists can hold other lists!

x = [1, [2, 1], [1, 4, [3, 1]], 5]
x[0] x[1][1] x[2][2][1]x[2][0]

x[1] x[2] x[2][2]a = [2, 1]
b = [3, 1]
c = [1, 4, b]
x = [1, a, c, 5]

10/5/18 Nested Lists 2

Two Dimensional Lists

Table of Data Images

10/5/18 Nested Lists 3

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

0 1 2 3

0

1

4

2

3

Store them as lists of lists (row-major order)
d = [[5,4,7,3],[4,8,9,7],[5,1,2,3],[4,1,2,9],[6,7,8,0]]

0 1 2 3 4 5 6 7 8 9 101112

0
1
2
3
4
5
6
7
8
9

10
11
12

Each row, col
has a value Each row, col has

an RGB value

Overview of Two-Dimensional Lists

• Access value at row 3, col 2:

d[3][2]
• Assign value at row 3, col 2:

d[3][2] = 8
• An odd symmetry

§ Number of rows of d: len(d)

§ Number of cols in row r of d: len(d[r])

10/5/18 Nested Lists 4

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d
0 1 2 3

0
1

4

2

3

How Multidimensional Lists are Stored

• b = [[9, 6, 4], [5, 7, 7]]

• b holds name of a one-dimensional list
§ Has len(b) elements
§ Its elements are (the names of) 1D lists

• b[i] holds the name of a one-dimensional list (of ints)
§ Has len(b[i]) elements

10/5/18 Nested Lists 5

id2

9
6
4

id3

5
7
7

id1

id2
id3

id1b

9 6 4
5 7 7

Ragged Lists: Rows w/ Different Length

10/5/18 Nested Lists 6

• b = [[17,13,19],[28,95]]

• Will see applications of this later

id2

17
13
19

id3

28
95

id1
id1b

id2
id3

0
1
2

1 1
0

0

Slices and Multidimensional Lists

• Only “top-level” list is copied.
• Contents of the list are not altered
• b = [[9, 6], [4, 5], [7, 7]]

10/5/18 Nested Lists 7

id2

9
6

id1

id2
id3

id1b

id4

id3

4
5id4

7
7

x = b[:2]

id5x

id5

id2
id3

Slices and Multidimensional Lists

• Only “top-level” list is copied.
• Contents of the list are not altered
• b = [[9, 6], [4, 5], [7, 7]]

10/5/18 Nested Lists 8

id2

9
6

id1

id2
id3

id1b

id4

id3

4
5id4

7
7

x = b[:2]

id5x

id5

id2
id3

Slices and Multidimensional Lists

• Create a nested list
>>> b = [[9,6],[4,5],[7,7]]

• Get a slice
>>> x = b[:2]

• Append to a row of x
>>> x[1].append(10)

• x now has nested list
[[9, 6], [4, 5, 10]]

• What are the contents of
the list (with name) in b?

10/5/18 Nested Lists 9

A: [[9,6],[4,5],[7,7]]
B: [[9,6],[4,5,10]]
C: [[9,6],[4,5,10],[7,7]]
D: [[9,6],[4,10],[7,7]]
E: I don’t know

Slices and Multidimensional Lists

• Create a nested list
>>> b = [[9,6],[4,5],[7,7]]

• Get a slice
>>> x = b[:2]

• Append to a row of x
>>> x[1].append(10)

• x now has nested list
[[9, 6], [4, 5, 10]]

• What are the contents of
the list (with name) in b?

10/5/18 Nested Lists 10

A: [[9,6],[4,5],[7,7]]
B: [[9,6],[4,5,10]]
C: [[9,6],[4,5,10],[7,7]]
D: [[9,6],[4,10],[7,7]]
E: I don’t know

Functions and 2D Lists

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numrows = len(table) # Need number of rows
numcols = len(table[0]) # All rows have same no. cols
result = [] # Result (new table) accumulator
for m in range(numcols):

Get the column elements at position m
Make a new list for this column
Add this row to accumulator table

return result
10/5/18 Nested Lists 11

1 2

3 4

5 6

1 3 5

2 4 6

Functions and 2D Lists

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numrows = len(table) # Need number of rows
numcols = len(table[0]) # All rows have same no. cols
result = [] # Result (new table) accumulator
for m in range(numcols):

row = [] # Single row accumulator
for n in range(numrows):

row.append(table[n][m]) # Create a new row list
result.append(row) # Add result to table

return result
10/5/18 Nested Lists 12

1 2

3 4

5 6

1 3 5

2 4 6

Functions and 2D Lists

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numrows = len(table) # Need number of rows
numcols = len(table[0]) # All rows have same no. cols
result = [] # Result (new table) accumulator
for m in range(numcols):

row = [] # Single row accumulator
for n in range(numrows):

row.append(table[n][m]) # Create a new row list
result.append(row) # Add result to table

return result
10/5/18 Nested Lists 13

1 2

3 4

5 6

1 3 5

2 4 6

Nest lists need
nested loops

JSON: Mixing and Lists and Dictionaries
{

"wind" : {
"speed" : 13.0,
"crosswind" : 5.0
},

"sky" : [
{

"cover" : "clouds",
"type" : "broken",
"height" : 1200.0

},
{

"type" : "overcast",
"height" : 1800.0

}
]

}

• weather.json:
§ Weather measurements

at Ithaca Airport (2017)
§ Keys: Times (Each hour)
§ Values: Weather readings

• This is a nested JSON
§ Values are also dictionaries
§ Containing more dictionaries
§ And also containing lists

10/5/18 Nested Lists 14

Nested
Dictionary

Nested
List

Nested
Dictionary See weather.py

