L2. Basics

Variables and Expressions Assignment Statements
Built-In Functions
Scripts
Comments
Keyboard Input
Formatting Output

Approach

Preview key concepts by first playing with Matlab as a calculator.

From formula to program.

Three Formulas

$A=4 \pi r^{2}$
$\cos (x / 2)=\sqrt{\frac{1+\cos (x)}{2}}$
$r=\frac{-b \pm \sqrt{b^{2}+4 a c}}{2 a}$
Surface Area of a Sphere

Half-Angle

Quadratic
Equation

Surface Area Increase

>> $r=6365$;
\gg delta $=.000001$;
>> A_plus = 4*pi*(r+delta)^2;
>> A = 4*pi*r^2;
>> Increase = A_plus - A
Increase =
0.15996992588043

Cosine(15 degrees)

>> $c=\cos (\mathrm{pi} / 3)$;
>> c = sqrt((1+c)/2);
$\gg c=\operatorname{sqrt}((1+c) / 2)$
c $=$
0.96592582628907
>> c15 $=\cos (\mathrm{pi} / 12)$
c15 =
0.96592582628907

$$
x^{2}+5 x+6=(x+2)(x+3)
$$

>> $\mathrm{a}=1$;
$\gg b=5$;
>> $\mathrm{c}=6$;
>> d = sqrt(b^2 - 4*a*c);
>> r1 = (-b - d)/(2*a)
r1 =
-3
>> $r 2=(-b+d) /(2 * a)$
r2 =
-2

Script

A sequence of instructions.
The order of the instructions is important.

A script is a program.

Comments

\% Quad1
$\%$ Solves $x^{\wedge} 2+5 x+6=0$

```
a = 1;
b = 5;
c = 6;
d = sqrt(b^2 - 4*a*c);
r1 = (-b - d)/(2*a)
r2 = (-b + d)/(2*a)
```


Comments

Begin with the "\%" symbol. Goes to the end of the line.

Facilitate the reading and understanding of the script.

Comments and Readability

Start each program (script) with a concise description of what it does

Define each important variable/constant
Top a block of code for a specific task with a concise comment.

```
    Arithmetic Expressions
% Quad1
% Solves x^2 + 5x + 6 = 0
```

a = 1;
b $=5$;
c $=6$;
d $=\operatorname{sqrt}\left(b^{\wedge} 2-4 * a^{*} c\right)$;
$r 1=(-b-d) /\left(2^{*} a\right)$
$r 2=(-b+d) /(2 * a)$

Arithmetic Expression

A recipe that results in the production of a number.

Built-In Functions

Quad1
$\%$ Solves $x^{\wedge} 2+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
$d=\operatorname{sqrt}\left(b^{\wedge} 2-4^{*} a^{*} c\right)$;
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /\left(2^{*} a\right)$

Built-In Functions

These are "packagings" of more advanced calculations.

Some examples: log, exp, \sin , \cos , \ldots

Variables

Quad1
Solves $x^{\wedge 2}+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
d $=\operatorname{sqrt}\left(b^{\wedge 2}-4 * a * c\right)$;
r1 = (-b - d)/(2*a)
$r 2=(-b+d) /(2 * a)$

Variables

A variable is a "box" that holds a numerical value.

It has a name.
The name must begin with a letter.
Upper and lower cases are distinguished. Can use all letters and numbers and the underscore character.
Example: x1A_New

Script Execution

Script Execution

Question Time

What is the value of X and Y after the following script is executed:

$$
\begin{aligned}
& X=2 ; \\
& Y=7 * X ; \\
& X=Y ; \\
& X=X+1 ;
\end{aligned}
$$

A. X is 5 and Y is 14
B. X is 15 and Y is 14
C. X is 5 and Y is 21
D. X is 15 and Y is 2

Remember...

Instructions are executed in order.
In assignment statements, the right hand side is evaluated first and then the value is assigned to the variable named on the left hand side.

The variables on the right hand side must have values before they can be used in an expression.

Formatting Output

When leaving off the semicolon isn't good enough.

The tools: disp, fprintf

The input Command

where to put it
a prompt message in quotes

Processed after the user hits the senter> key.

disp
Displays a string.
Example:
disp('This is a message')

fprintf

Used to format output. Example:

$$
x=1.23456789
$$

fprintf('x = \%5.2f\n',x))

Output line will look like

$$
x=1.23
$$

The In aenerates a carriaae return

A Modification...

$$
r 1=(-b-d) /(2 * a)
$$

$$
r 2=(-b+d) /\left(2^{*} a\right)
$$

$$
r 1=(-b-d) /\left(2^{*} a\right)
$$

$$
r 2=(-b+d) /(2 * a)
$$

disp(' ')
fprintf('Root1 = \%10.6f\n',r1))
fprintf('Root2 = \%10.6f',r2))

