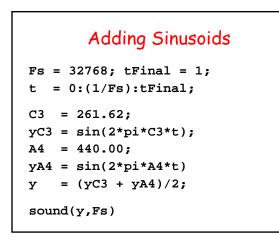
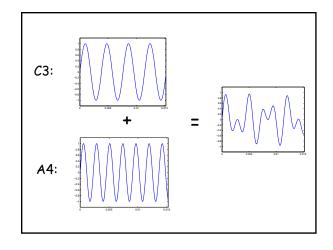


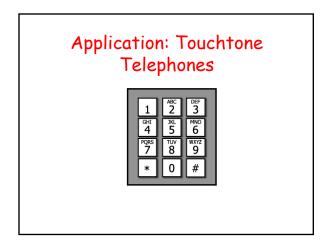


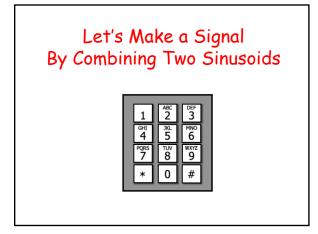

A Sinusoidal Function  $y(t) = \sin(2\pi\omega t)$   $\omega$  = the frequency Higher frequency means that y(t) changes more rapidly with time.

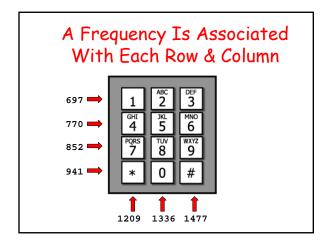


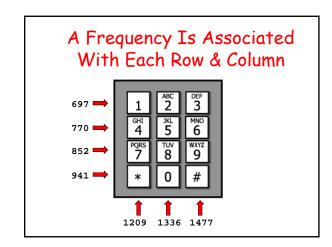


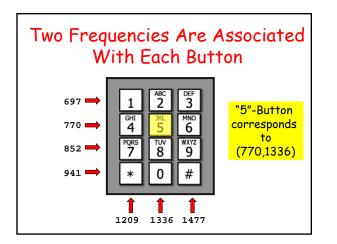





## Digitize for Sound


```
% Sample Rate
Fs = 32768
% Sample times
tFinal = 1;
t = 0:(1/Fs):tFinal
% Digitized sound...
omega = 800;
y = sin(2*pi*omega*t)
sound(y,Fs)
```

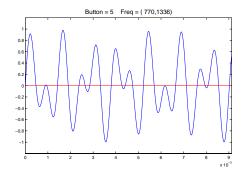

| Equal-Tempered Tuning                                                                                   |        |        |        |        |         |         |
|---------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|---------|---------|
| 0 A                                                                                                     | 55.00  | 110.00 | 220.00 | 440.00 | 880.00  | 1760.00 |
| 1 A#                                                                                                    | 58.27  | 116.54 | 233.08 | 466.16 | 932.33  | 1864.66 |
| 2 B                                                                                                     | 61.74  | 123.47 | 246.94 | 493.88 | 987.77  | 1975.53 |
| 3 C                                                                                                     | 65.41  | 130.81 | 261.63 | 523.25 | 1046.50 | 2093.01 |
| 4 C#                                                                                                    | 69.30  | 138.59 | 277.18 | 554.37 | 1108.73 | 2217.46 |
| 5 D                                                                                                     | 73.42  | 146.83 | 293.67 | 587.33 | 1174.66 | 2349.32 |
| 6 D#                                                                                                    | 77.78  | 155.56 | 311.13 | 622.25 | 1244.51 | 2489.02 |
| 7 E                                                                                                     | 82.41  | 164.81 | 329.63 | 659.26 | 1318.51 | 2637.02 |
| 8 F                                                                                                     | 87.31  | 174.61 | 349.23 | 698.46 | 1396.91 | 2793.83 |
| 9 F#                                                                                                    | 92.50  | 185.00 | 369.99 | 739.99 | 1479.98 | 2959.95 |
| 10 G                                                                                                    | 98.00  | 196.00 | 391.99 | 783.99 | 1567.98 | 3135.96 |
| 11 G#                                                                                                   | 103.83 | 207.65 | 415.31 | 830.61 | 1661.22 | 3322.44 |
| 12 A                                                                                                    | 110.00 | 220.00 | 440.00 | 880.00 | 1760.00 | 3520.00 |
|                                                                                                         |        |        |        |        |         |         |
| Entries are frequencies. Each Column is an Octave.<br>Magic Factor = 2^(1/12). C3 = 261.63, A4 = 440.00 |        |        |        |        |         |         |



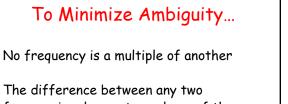







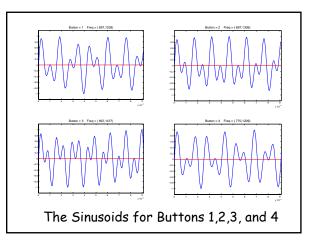





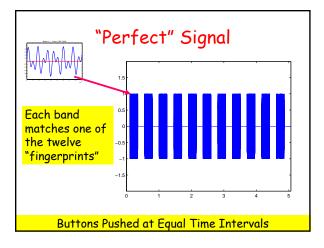




# Signal For Button 5:

Fs = 32768; tFinal = .25; t = 0:(1/Fs):tFinal; yR = sin(2\*pi\*770\*t); yC = sin(2\*pi\*1336\*t) y = (yR + yC)/2; sound(y,Fs)

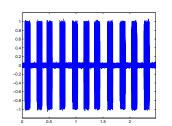





frequencies does not equal any of the frequencies.

The sum of any two frequencies does not equal any of the frequencies.




What Does the Signal Look Like For a Multi-Digit Call?



## "Noisy" Signal

Each band approximately matches one of the twelve "fingerprints"

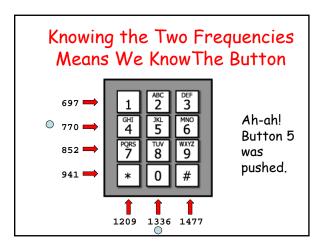


Buttons Pushed at Unequal Time Intervals

### The Segmentation Problem

When does a Band Begin?

When does a band end?


Somewhat like the problem of finding an edge in a digitized picture.

### Fourier Analysis

Once a band is isolated, we know it is the sum of two sinusoids:

What are the two frequencies?

Fourier analysis tells you.

