
L20. More on 2D Arrays

Operations
Subscripting
Functions* & 2D Arrays

*Will see two new things.
Boolean-valued functions
Functions that have a function as a parameter.

Two Applications

A commercial setting that involves cost
arrays, inventory arrays, and purchase
orders.

A setting that requires the visualization
of a function of two variables f(x,y) via
contour plotting.

A Cost/Inventory Setting

A company has 3 factories that make 5
different products.

The cost of making a product varies from
factory to factory.

The inventory varies from factory to
factory.

Problems
A customer submits a purchase order that
is to be filled by a single factory.

1. How much would it cost a factory
to fill the order?

2. Does a factory have enough inventory
to fill the order?

3. Among the factories that can fill the
order, who can do it most cheaply?

Cost Array

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C(i,j) is what it costs
factory i to make product j.

Inventory Array

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

The value of Inv(i,j) is the inventory in
factory i of product j.

Purchase Order

The value of PO(j) is the number
product j’s that the customer wants

1 0 12 529PO:

How Much Does it Cost for
Each Factory to Process

a Purchase order?

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

1*10 + 0*36 + 12*22 + 29* 15 + 5*62

For
factory 1:

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(1,j) * PO(j)
end

For
factory 1:

j = 1

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(1,j) * PO(j)
end

For
factory 1:

j = 2

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(1,j) * PO(j)
end

For
factory 1:

j = 3

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(1,j) * PO(j)
end

For
factory 1:

j = 4

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(1,j) * PO(j)
end

For
factory 1:

j = 5

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(2,j)*PO(j)
end

For
factory 2:

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;
for j=1:5

s = s + C(i,j)*PO(j)
end

For
factory i:

function TheBill = iCost(i,C,PO)
% The cost when factory i fills
% the purchase order
nProd = length(PO)
TheBill = 0;
for j=1:nProd
TheBill = TheBill + C(i,j)*PO(j);

end

Encapsulate…

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding the Cheapest

1019

930

1040

As computed
by iCost

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding Cheapest: Initialization

1019

930

1040

iBest: minBill:0 inf

Can
we do
better?

A Note on “inf’’

A special value that can be regarded as
+ infinity.

x = 10/0 assigns inf to x
y = 1+x assigns inf to y
z = 1/x assigns zero to z
w < inf is always true if w is numeric

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Improvement at i = 1

1019

930

1040

iBest: minBill:1 1019

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Improvement at i = 2

1019

930

1040

iBest: minBill:2 930

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

No Improvement at i = 3

1019

930

1040

iBest: minBill:2 930

iBest = 0; minBill = inf;

for i=1:nFact
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement
iBest = i; minBill = iBill;

end
end

Finding the Cheapest

Inventory Considerations

What if a factory lacks the inventory to
fill the purchase order?

Such a factory should be excluded from
the find-the-cheapest computation.

Who Can Fill the Order?

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

Yes

No

Yes

Because 12 < 29

Wanted: A True/False Function

iCanDoInv

PO

i

B

B is “true” if factory i can fill the order.
B is “false” if factory i cannot fill the order.

Boolean Operations
in Matlab

SO FAR we have indicated that
expressions like

a <= x && x <= b

abs(y) > 10

are either TRUE or FALSE.

The 0-1 Secret
In reality, expressions like

a <= x && x <= b

abs(y) > 10

render the value “1” if they are TRUE and
“0” if they are FALSE.

Example
>> x = 8; y = 7;

>> B = x<y
B =

0

>> B = x>y
B =

1

A Boolean-Valued Function
function B = Overlap(a,b,c,d)

% B is true if intervals [a,b]
% and [c,d] intersect.
% Otherwise B is false.
% Assume a<b and c<d.

abToLeft = b < c;
abToRight = d < a;
B = ~(abToLeft || abToRight);

Using Overlap
S = 0;
for k=1:100

a = rand; b = a + rand;
c = rand; d = c + rand;
if Overlap(a,b,c,d)
s = s+1;

end
end
probOverlap = s/100

Back to Inventory Problem

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

Initialization

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

B: 1

Still True…

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

B: 1

B = B && (Inv(2,1) >= PO(1))

Still True…

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

B: 1

B = B && (Inv(2,2) >= PO(2))

Still True…

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

B: 1

B = B && (Inv(2,3) >= PO(3))

No Longer True…

38 5 99 34

82 19 83 12Inv:

51 29 21 56

42

42

87

1 0 12 529PO:

B: 0

B = B && (Inv(2,4) >= PO(4))

function B = iCanDo(i,Inv,PO)
% B is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
B = 1;
while j<=nProd && B

B = B && (Inv(i,j) >= PO(j));
j = j+1;

end

Encapsulate…

iBest = 0; minBill = inf;

for i=1:nFact
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement
iBest = i; minBill = iBill;

end
end

Back To Finding the Cheapest

Don’t bother with this unless sufficient inventory.

iBest = 0; minBill = inf;
for i=1:nFact

if iCanDo(i,Inv,PO)
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement
iBest = i; minBill = iBill;

end
end

end

Back To Finding the Cheapest

function [iBest,minBill] = …

Cheapest(C,Inv,PO)
[nFact,nProd] = size(C);
iBest = 0; minBill = inf;
for i=1:nFact

if iCanDo(i,Inv,PO)
iBill = iCost(i,C,PO);
if iBill < minBill

iBest = i; minBill = iBill;
end

end
end

1 0 12 529PO:

C:

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding the Cheapest

1019

930

1040

As
computed
by iCost

Yes

No

Yes

As
computed
by iCanDo

New Problem

Visualizing a function of the form
z = f(x,y).

Think of z as an elevation which depends
on the coordinates x and y of the
location.

Sample Elevation Function

function z = Elev(x,y)

r1 = (x-1)^2 + 3*(y-1.5)^2;
r2 = 2*(x+2)^2 + (y-.5)^2;
r3 = (x-.5)^2 + 7*y^2;
z = 100*exp(-.5*r1) + …

90*exp(-.3*r2) + …
80*exp(-.4*r3);

Three Hills at (1,1.5),(-2,.5), (.5,0)

Its Contour Plot

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

Making a Contour Plot
x = linspace(-5,4,200);
y = linspace(-2.5,6.5,200);
A = zeros(200,200);
for i=1:200
for j=1:200

A(i,j) = Elev(x(j),y(i));
end

end

contour(x,y,A,15)

Set up a matrix of function evals

General Set-Up

function A = SetUp(f,xVals,yVals)
Nx = length(xVals);
Ny = length(yVals);
A = zeros(Ny,Nx);
for i=1:Ny
for j=1:Nx

A(i,j) = f(xVals(j),yVals(i));
end

end

Calling SetUp

x = linspace(-5,4,200);
y = linspace(-2.5,6.5,200);
F = SetUp(@Elev,x,y);

Not just ‘Elev’
The @ is required for function parameters.

Generating a Cross Section

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Enter endpoints via ginput
Sample Elev(x,y) along the line segment

Mouse Input Via ginput

To draw a line segment connecting
(a(1),b(1)) and (a(2),b(2)):

[a,b] = ginput(2);
plot(a,b)

[a,b] = ginput(n) puts the mouseclick
coords in length-n arrays a and b.

n = 100;
t = linspace(0,1,n);
x = linspace(a(1),a(2),n);
y = linspace(b(1),b(2),n);
for i=1:n
% At "time" t(i) we are at (x(i),y(i)).
% Compute elevation at time t(i).

f(i) = Elev(x(i),y(i));
end
figure
plot(t,f)

