L20. More on 2D Arrays

Operations
Subscripting
Functions™ & 2D Arrays

*Will see two new things.
Boolean-valued functions
Functions that have a function as a parameter.

Two Applications

A commercial setting that involves cost
arrays, inventory arrays, and purchase
orders.

A setting that requires the visualization
of a function of two variables f(x,y) via
contour plotting.

A Cost/Inventory Setting

A company has 3 factories that make 5
different products.

The cost of making a product varies from
factory to factory.

The inventory varies from factory to
factory.

Problems

A customer submits a purchase order that
is to be filled by a single factory.

1. How much would it cost a factory
to fill the order?

2. Does a factory have enough inventory
to fill the order?

3. Among the factories that can fill the
order, who can do it most cheaply?

Cost Array

DEEEE

ot [z [2]
DEDEE

The value of C(1,j) is what it costs
factory i to make product j.

Inventory Array

SRR

e[o] 2]
i [a =]

The value of Inv(i,j) is the inventory in
factory i of product j.

Purchase Order

o: [o =5

The value of PO(j) is the number
product j's that the customer wants

How Much Does it Cost for
Each Factory to Process
a Purchase order?

DEEEE

ot [z [2]
DEDEE

o [o [5
For

factory 1.
1*10 + 0*36 + 12*22 + 29* 15 + 5*62

EE0E

ot 12 o] 2o
EEE0E

o: [l =[5

S
For for j=1:5
factory 1: — & +

=7

0 B0

o[22 s o] 2o
EEE0E

o [

S
For for j=1:5
factory 1: — & +

=7

0B BE

o+ [o] 2o
EEE0E

o [o [R5

S
For for j=1:5
factory 1: — & +

=7

DEE B

o+ [0] 2o
EEE0E

o [o [[

S
For for j=1:5
factory 1: — & +

=7

DEE0

o+ [o] 2] o0
EEE0E

o:[Jo [2[= [

S
For for j=1:5
factory 1: — & +

=7

DEEEE

ot [z [2]
DEDEE

o: [o o=]s

S
For for j
fC(CTOI"y 2: S

;1:5
= s + C(2,}))*PO()

DEEEE

ot [z [2]
DEDEE

o: [o o=]s

S
For for j
fC(CTOI"y ¥ S

Encapsulate..

function TheBill = 1Cost(1,C,PO)
% The cost when factory 1 fills
% the purchase order
nProd = length(PO)
TheBrll = O;
for jJ=1:nProd

TheBill = TheBill + C(1,}j)*PO(J);
end

Finding the Cheapest

[s[a]E]] o
ot [o[2] 0
s [a] w0

o Jo [i2aofs | g

As computed
by 1Cost

Finding Cheapest: Initialization

[s[a]E]] o
ot [o[2] 0
s [a 5] 00 e

we do

?
o[[o[=]s]

iBest:‘ 0 ‘ minBiII:‘ inf ‘

A Note on "iInf"

A special value that can be regarded as
+ infinity.

10/0 assigns inf to x

1+x assigns inf foy

1/x assigns zero to z

< inf is always true if w is numeric

= N < X
|l

Improvement at i =1

1019 e
ot [o[2] o0
s [a o] s0a

o[o []s_

iBest:‘ 1 ‘ minBiII:‘ 1019 ‘

Improvement at i = 2
o] ee] o

o: [m [2]w] w0 e
5 [a] w0

o: [o []s

iBest:‘ 2 ‘ minBiII:‘ 930 ‘

No Improvement at i = 3
e[

ot [o[2] 0
1060

o: [o []s

iBest:‘ 2 ‘ minBiII:‘ 930 ‘

Finding the Cheapest

i1IBest = O0; minBill = Inf;

for 1=1:nFact
i1IBill = 1Cost(1,C,PO);
if i1Bill < minBill

% Found an Improvement
i1Best = 1; minBill = 1Bill;

end

end

Inventory Considerations

What if a factory lacks the inventory to
fill the purchase order?

Such a factory should be excluded from
the find-the-cheapest computation.

Who Can Fill the Order?

S]] ves
oD o
s [a] 7] ves

o [o [[

Because 12 < 29

Wanted: A True/False Function

Inv 1CanDo B
PO

B is "true” if factory i can fill the order.
B is "false" if factory i cannot fill the order.

Boolean Operations
in Matlab

SO FAR we have indicated that
expressions like

a <= X && X <=0
abs(y) > 10

are either TRUE or FALSE.

The 0-1 Secret

In reality, expressions like
a <=x && X <=Db
abs(y) > 10

render the value "1" if they are TRUE and
"0" if they are FALSE.

Example

>> X = 8; Yy = 7;

>> B = X<y

oo
[

>> B = X>y

%
%
%
%

o

A Boolean-Valued Function

function B = Overlap(a,b,c,d)
B 1s true 1T Intervals

and [c,d] intersect.

Otherwise B 1s false.

Assume a<b and c<d.

abToLeft = b < c;
abToRIght = d < a;
B = ~(abToLeft || abToRight);

Using Overlap

S = 0;
for k=1:100
a = rand; b = a + rand;
c = rand; d = c¢c + rand;
1T Overlap(a,b,c,d)
S = s+]1;
end
end
probOverlap = s/100

Back to Inventory Problem

53[5 [99) 34] 42

Inv:

EEEED

Tnitialization

S
[w2

BEEEED

Still True...

53[5 |99)o4] 42

o Wl e s
EEEED

o: @l =5

B =B &% (Inv(2,1) >= PO(1))

Still True...

SRR

===
BEEEED

o: [

B =B & (Inv(2,2) >= PO(2))

Still True...

SRR

== l=]]
BEEEED

o [o [B[= s

B =B & (Inv(2,3) >= PO(3))

No Longer True...

8|5 [0 a] 42

IR EIEa
stfeofz|ss]er

o1 fo [12fad]s

B =B & (Inv(2,4) >= PO(4))

Encapsulate..

function B = 1CanDo(1, Inv,P0O)
% B 1s true 1f factory 1 can fill
% the purchase order. Otherwise, false
nProd = length(PO);

j<: nProd && B
= B && (Inv(i,j) >= PO());
J+1

s o
[

Back To Finding the Cheapest

i1IBest = O0; minBill = Inf;
for 1=1:nFact
i1IBill = 1Cost(1,C,PO);
if i1Bill < minBill
% Found an Improvement
i1Best = 1; minBill = 1Bill;
end

end

Don't bother with this unless sufficient inventory.

Back To Finding the Cheapest

1Best
for

= 0; minBill = 1nT;
NFact
1CanDo(r, Inv,P0O)

C
it

iIBill = 1Cost(1,C,PO);
if 1Bill < minBill
% Found an Improvement
i1Best = 1; minBill = 1Bill;
end

end
end

function [i1Best,minBrill] = ..
Cheapest(C, Inv,PO)
[nFact,nProd] = si1ze(C);
iIBest = O; minBill = 1nf;
for 1=1:nFact
1T 1CanDo(1, Inv,P0O)
i1IBill = 1Cost(1,C,PO);
if 1Bill < minBill
iIBest = 1; minBill = 1Bill;
end
end

end

Finding the Cheapest

ot [l mw]w] w0 N
s [a o] s0a
wfEERE] T T

As
compu’red computed
by iCost by iCanDo

New Problem

Visualizing a function of the form
z = f(x.y).

Think of z as an elevation which depends
on the coordinates x and y of the
location.

Sample Elevation Function

function z = Elev(X,Y)

rl = (X-1)"2 + 3*(y-1.5)"2;
r2 = 2*(x+2)"2 + (y--5)"2;
r3 = (X=-.5)"2 + 7*y"2;

z = 100*exp(-.5*rl1) + ..
90*exp(--3*r2) + ..
80*exp(-.4*r3);

Three Hills at (1,1.5),(-2,.5), (.5,0)

| I I
w N (o o (o N w EEN

Its Contour Plot

Making a Contour Plot

X inspace(-5,4,200);
y = linspace(-2.5,6.5,200);
A = zeros(200,200);
for 1=1:200
for J=1:200
A(1,3) = Elev(xd).y(1));
end
end

contour(x,y,A,15)

Set up a matrix of function evals

General Set-Up

function A = SetUp(Tf,xVals,yVals)
Nx = length(xVals);
Ny = length(yVals);
A = zeros(Ny,Nx);
for 1=1:Ny
for J=1:Nx
A(r,3) = t(xvVals(g).yVals(1));
end
end

Calling SetUp

x = linspace(-5,4,200);
y = linspace(-2.5,6.5,200);
F = SetUp(@Elev,Xx,y);

Not just EleV’
The @ is required for function parameters.

Generating a Cross Section

Enter endpoints via ginput
Sample Elev(x,y) along the line segment

Mouse Input Via ginput

To draw a line segment connecting
(a(1),b(1)) and (a(2),b(2)):

[a,b] = ginput(2);
plot(a,b)

[2.b] = ginput(n) puts the mouseclick
coords in length-n arrays a and b.

100;

= linspace(0,1,n);

= linspace(a(l),a(2),n);

= linspace(b(1),b(2),n);

for 1=1:n

% At "time" t(r) we are at (x(n1),y(1)).
% Compute elevation at time t(n).

(1) = Elev(x(1),y(1));

< X = 5

end
figure
plot(t,T)

