L17. Structures

Simple Structures
Structure Arrays
Structures with Array Fields
Other Possibilities

Data is Often Related

A point in the plane has an \times coordinate and y coordinate.

If a program manipulates lots of points, there will be lots of x 's and y 's.

Anticipate clutter. Is there a way to "package" the two coordinate values?

Packaging Affects Thinking

Our Reasoning Level:
P and Q are points. Compute the midpoint M of the connecting line segment.

Behind the scenes we do this:

$$
M_{x}=\left(P_{x}+Q_{x}\right) / 2 \quad M_{y}=\left(P_{y}+Q_{y}\right) / 2
$$

Packaging

Functions "'package" calculations.
Structures "' package" data.

Seen This Before

Functions are used to "'package" calculations.

Elevates the level of our reasoning.
Critical for problem solving.

Packaging
Functions ' 'package" calculations.
Structures ' "package" data.

Simple Example
P1 = struct(${ }^{\prime} x^{\prime}, 3, y^{\prime}, 4$);
P2 $=\operatorname{struct}\left({ }^{\prime} x^{\prime},-1, y^{\prime}, 7\right) ;$
$D=\operatorname{sqrt}\left((p 1 \cdot x-p 2 \cdot x)^{\wedge} 2+(p 1 \cdot y-p 2 \cdot y)^{\wedge} 2\right) ;$
Distance between two points.
p1.x, p1.y, p2.x,p2.y participating as variables-because they are.

Initialization

```
P1 = struct('x', 3,' y',4);
```

p1 is a structure.
The structure has two fields.
Their names are x and y.
They are assigned the values 3 and 4 .

How to Visualize p1


```
P1 = struct(' 'x', 3,' y',4);
```


Legal/Illegal Maneuvers

$P=\operatorname{struct}\left({ }^{\prime} x^{\prime}, 3, y^{\prime} y^{\prime}, 4\right)$
$\mathrm{Q}=\operatorname{struct}\left({ }^{\prime} \mathrm{x}^{\prime}, 5, \mathrm{y}^{\prime} \mathrm{y}^{\prime}, 6\right)$
$R=Q \quad \%$ Legal. R is copy of Q
$S=(Q+R) / 2$ \% Illegal.

Legal/Illegal Maneuvers

\% Illegal...
$\mathrm{P}=$ struct (' $\mathrm{x}^{\prime}, 3,{ }^{\prime} \mathrm{y}^{\prime}$)
$P \cdot y=4$
\% Legal
$\mathrm{P}=\operatorname{struct}\left({ }^{\prime} \mathrm{x}^{\prime}, 3,{ }^{\prime} \mathrm{Y}^{\prime},[]\right)$
P. $y=4$

Using the Empty array as a place holder

A Function Can Have Inputs that are Structures
 function $d=\operatorname{dist}(P, Q)$
 $\% P$ and Q are points.
 \% d is the distance between them
 $D=\operatorname{sqrt}\left((P \cdot x-Q . x)^{\wedge} 2+\ldots\right.$
 $$
\left.(P \cdot y-Q \cdot y)^{\wedge} 2\right) ;
$$

A Function Can Return a Structure

function $P=$ MakePoint (x, y)
\% P is a point with P.x and P.y
\% assigned the values x and y.
$\mathrm{P}=$ struct('x', $\left.\mathbf{x}, \mathbf{y}^{\prime}, \mathrm{y}\right) ;$
Good Style.
Highlights the structure's definition.

Functions and Structures

function DrawLS ($\mathrm{P}, \mathrm{Q}, \mathrm{c}$)
$\% P$ and Q are points.
\% Draws a line segment connecting
\% P and Q. Color specified by c

```
plot([P.x Q.x],[P.Y Q.y],C)
```


Pick Up Sticks Script

s = 'rgbmcy';
for $k=1: 100$
P = MakePoint (randn(1), randn (1));
$Q=$ MakePoint (randn (1) , randn (1)) ;
$\mathrm{c}=\mathrm{s}($ ceil (6*rand(1)));
DrawLS ($\mathrm{P}, \mathrm{Q}, \mathrm{c}$)
end

Generates two random points and chooses one of six colors randomly.

Structure Arrays

An array whose components are structures.

And all the structures are the same.

Example: An array of points...

Use this "Make" Function

function $P=$ MakePoint (x, y)
\% P is a point with P.x and P.y
$\%$ assigned the values x and y.
$P=$ struct ('x', $\left.x, y^{\prime}, y\right) ;$

Structures with Array Fields

Let's develop a structure that can be used to represent a colored disk.

Four fields:
xc: \mathbf{x}-coordinate of center
$y c: ~ y$-coordinate of center
r : radius
c: rgb color vector

```
A Function that Returns an
        Array of Points
function \(P\) = CirclePoints ( n )
theta \(=2 * \mathrm{pi} / \mathrm{n}\);
for \(k=1\) : \(n\)
    \(c=\cos (\) theta*k);
    s = sin(theta*k);
    \(P(k)=\) MakePoint(c,s);
end
```


A Function that Returns an Array of Points

```
function \(P=\) CirclePoints ( \(n\) )
```


Examples

```
D1 = struct('xc',1,' yc',2,'r', 3,\ldots
        'c',[1 0 1])
    D2 = struct(' }\mp@subsup{\textrm{Xc}}{}{\prime},4,\mp@code{\prime}\mp@subsup{\textrm{yc}}{}{\prime},0,'r',1,
        'c',[.2 .5 .3])
```


Problem

Assume D1 and D2 are colored disks.
Let's compute their "average".
$r=(D 1 . r+D 2 . r) / 2 ;$
$\mathrm{xc}=(\mathrm{D} 1 . \mathrm{xc}+\mathrm{D} 2 . \mathrm{xc}) / 2$
$\mathrm{yc}=(\mathrm{D} 1 \cdot \mathrm{yc}+\mathrm{D} 2 \cdot \mathrm{yc}) / 2$
$c=(D 1 . c+D 2 . c) / 2$;

