15. Strings

Operations

Subscripting
Concatenation
Search
Numeric-String Conversions

Built-Ins: int2str, num2str, str2double

Previous Dealings

N = input('Enter Degree:')
title('The Sine Function')
disp(sprintf('N = \%2d',N))

A String is an Array of Characters
'Aa7*>@ x!'

A	a	7	$*$	$>$	$@$		x	$\mathrm{!}$

This string has length 9.

Numerical Data is Often Encoded in Strings

For example, a file containing
Ithaca weather data begins with the string
W07629N4226

Longitude: $76^{\circ} 29^{\prime}$ West
Latitude: $42^{\circ} 26^{\prime}$ North
\(\left.$$
\begin{array}{|l}\begin{array}{c}\text { Numerical Data is Often } \\
\text { Encoded in Strings }\end{array}
$$

For example, a file containing

Ithaca weather data begins with the string

W07629N4226\end{array}\right\}\)| Longitude:$76^{\circ} 29^{\prime}$ West
 $42^{\circ} 26^{\prime}$ North |
| :--- |

Why Important

1. Numerical Data often encoded as strings
2. Genomic calculation/search

What We Would Like to Do

W07629N4226

Get hold of the substring '07629'
Convert it to floating format so that it can be involved in numerical calculations.

Genomic Computations

Looking for patterns in a DNA sequence:
'ATTCTGACCTCGATC' ACCT
ATtCTGACCTCGATC ATtGCTGACCTCGAT
Remove?

> Working With Strings

Strings Can Be Assigned to Variables

$S={ }^{\prime} N=2$ '

$' N=2 '$
S

N = 2;
S = sprintf('N = \%1d', N)
sprintf produces a formatted string using fprintf rules

Strings Have a Length

s = 'abc';
n = length(s); \% n = 3
$s=1 \prime ; \quad \%$ the empty string
$\mathrm{n}=$ length(s) $\quad \% \mathrm{n}=0$
$\mathrm{s}=$ " $; \quad$ \% single blank
$\mathrm{n}=$ length(s) $\% \mathrm{n}=1$

Concatenation

This:

$$
\begin{aligned}
& \mathrm{S}=\text { 'abc' } \\
& \mathrm{T}=\text { ' } x y^{\prime} \\
& \mathrm{R}=[\mathrm{S} \mathrm{~T}]
\end{aligned}
$$

is the same as this:

$$
R=\text { 'abcxy' }
$$

Replacing and Appending

Characters

s = 'abc';
$s(2)=$ ' $x^{\prime} \quad \% \quad s=$ 'axc'
$\mathrm{t}={ }^{\prime} \mathrm{abc}{ }^{\prime}$
$t(4)=$ 'd' $\% ~ t=' a b c d '$
$\mathrm{v}=\times$
$v(5)=$ ' x \% $v=$ ' x^{\prime}

Repeated Concatenation

This:

```
s = "';
for \(k=1: 5\)
        s = [s 'z'];
end
```

is the same as this:
z = 'zzzzz'

Extracting Substrings

s = 'abcdef';

$x=s(3)$	$\%$	$x=' c '$
$x=s(2: 4)$	$\%$	$x={ }^{\prime} b c d^{\prime}$
$x=s(l e n g t h(s))$	$\%$	$x=' f \prime$

Question Time

```
```

s = 'abcde';

```
```

s = 'abcde';
for k=1:3
for k=1:3
s = [s(4:5) s(1:3)];
s = [s(4:5) s(1:3)];
end

```
```

end

```
```

What is the final value of s ?

A abcde B. bcdea C. eabcd D. deabc
x is a string made up of the characters ' A ', ' C ', ' T ', and ' G '.

Construct a string Y obtained from x by replacinig each A by T, each T by A, each C by G, and each G by C

```
x: ACGTTGCAGTTCCATATG
y: TGCAACGTCAAGGTATAC
x: ACGTTGCAGTTCCATATG
y: TGCAACGTCAAGGTATAC
```


Problem: DNA Strand

How y is Built Up

x: ACGTTGCAGTTCCATATG
y: TGCAACGTCAAGGTATAC

Start: y : "'
After 1 pass: $\quad y: \quad$ T
After 2 passes: y: TG
After 3 passes: y : TGC

How y is Built Up	
x : ACGTTGCA y : TGCAACGT	tccatatg AGGTATAC
Start: After 1 pass: After 2 passes: After 3 passes:	$\begin{aligned} & y: ~ ", ~ \\ & y: ~ T \\ & y: \text { TG } \\ & y: \text { TGC } \end{aligned}$

Comparing Strings

Built-in function stremp
strcmp(s1,s2) is true if the strings s1 and $\mathbf{s 2}$ are identical.

```
for k=1:length(x)
        if strcmp(x(k),'A')
            y = [y 'T'];
        elseif strcmp(x(k),'T')
            y = [y 'A'];
        elseif strcmp(x(k),'C')
            y = [y 'G'];
        else
            y = [y 'C'];
        end
end
```


A DNA Search Problem

Suppose S and T are strings, e.g.,
S: 'ACCT'

T: ‘ATGACCTGA'

We'd like to know if S is a substring of T and if so, where is the first occurrance?
function $k=$ FindCopy(S, T)
$\% \mathrm{~S}$ and T are strings.
\% If S is not a substring of T, \% then $k=0$.
\% Otherwise, k is the smallest \% integer so that S is identical
\% to $T(k: k+l e n g t h(S)-1)$.

A DNA Search Problem

S: 'ACCT'

T: 'ATGACCTGA'
strcmp(S,T(1:4)) False

A DNA Search Problem

S: 'ACCT'

T: 'ATGACCTGA'
strcmp(S,T(2:5)) False

A DNA Search Problem
S: 'ACCT'

T: 'ATGACCTGA'
strcmp(S,T(4:7))) True

Subscript Error
s: 'ACCT'
T: 'ATGACTGA'
strcmp(S, $\mathbf{T}(6: 9)$)
There's a problem if S is not a substring of T.

Post-Loop Processing
Loop ends when this is false:
Last<=length(T) \&\& $\ldots .$. $\sim \operatorname{strcmp}(S, T(F i r s t: L a s t))$

An example...

String-to-Numeric Conversion

Convention:
W07629N4226

Longitude: 76° 29' West
Latitude: $42^{\circ} \mathbf{2 6 '}^{\prime}$ North

String-to-Numeric Conversion

$\mathrm{S}={ }^{\prime} \mathrm{W} 07629 \mathrm{~N} 4226{ }^{\prime}$
s1 = s(2:4);
x1 = str2double(s1);
s2 $=s(5: 6) ;$
x2 = str2double(s2);
Longitude = x1 + x2/60

There are 60 minutes in a degree.

Problem

Given a date in the format
'mm/dd'
specify the next day in the same format
Y = Tomorrow(x)

x	y
$02 / 28$	$03 / 01$
$07 / 13$	$07 / 14$
$12 / 31$	$01 / 01$

Get the Day and Month

month $=$ str2double(x(1:2));
day $=$ str2double(x(4:5));

Thus, if $x=$ '02/28' then month is assigned the numerical value of 2 and day is assigned the numerical value of 28 .

```
L = [lllllllllllllllll
if day+1<=L(month)
% Tomorrow is in the same month
        newDay = day+1;
        newMonth = month;
```

$\mathrm{L}=\left[\begin{array}{llllllllllll}31 & 28 & 31 & 30 & 31 & 30 & 31 & 31 & 30 & 31 & 30 & 31\end{array}\right] ;$
else
\% Tomorrow is in the next month
newDay = 1;
if month <12
newMonth $=$ month+1;
else
newMonth = 1;
end

The New Day String

Compute newDay (numerical) and convert...
d = int2str(newDay);
if length(d)==1
d = ['0' d];
end
The New Month String
Compute newMonth (numerical) and convert...
m = int2str(newMonth);
if length(m)==1;
$\mathrm{m}=\left[{ }^{\prime} \mathrm{O}^{\prime} \mathrm{m}\right] ;$
end

The Final Concatenation

$$
y=[m \text { '/' d]; }
$$

