15. Strings

Operations Subscripting Concatenation Search Numeric-String Conversions

Built-Ins: int2str,num2str, str2double

Previous Dealings

- N = input(`Enter Degree:')
- title('The Sine Function')
- disp(sprintf('N = %2d',N))

Why Important

- 1. Numerical Data often encoded as strings
- 2. Genomic calculation/search

Numerical Data is Often Encoded in Strings

For example, a file containing Ithaca weather data begins with the string

W07629N4226

Longitude: 76° 29' West Latitude: 42° 26' North

What We Would Like to Do

W07629N4226

Get hold of the substring '07629'

Convert it to floating format so that it can be involved in numerical calculations.

Strings Have a Length		
s = `abc'; n = length(s);	% n = 3	
s = `';	% the empty string	
n = length(s)	% n = 0	
s = ` `;	% single blank	
n = length(s)	% n = 1	

Replacing and Appending Characters		
s = `abc'; s(2) = `x'	% s = `axc'	
t = `abc' t(4) = `d'	% t = `abcd'	
v = `' v(5) = `x'	% v = ` x'	

	Extracting Substrings	
=	<pre>`abcdef';</pre>	

х	= s(3)	%	x = `c'

x = s(2:4) % x = bcd'

s

x = s(length(s)) % x = 'f'

function y = DNA(x)
% x is a string consisting of
% the characters A, C, T, and G.
% y is a string obtained by
% replacing A by T, T by A,
% C by G and G by C.

Comparing Strings

Built-in function strcmp

strcmp(s1,s2) is true if the strings s1
and s2 are identical.

How \mathbf{y} is Bu	uilt (Jp
x: ACGTTGCAGTTCCATATG y: TGCAACGTCAAGGTATAC		
		۱/
	y:	
Start: After 1 pass:	у: У:	т
After 1 pass:	-	

```
for k=1:length(x)
    if strcmp(x(k),'A')
        y = [y 'T'];
    elseif strcmp(x(k),'T')
        y = [y 'A'];
    elseif strcmp(x(k),'C')
        y = [y 'G'];
    else
            y = [y 'C'];
    end
end
```

A DNA Search Problem

Suppose S and T are strings, e.g.,

S: 'ACCT'

T: `ATGACCTGA'

We'd like to know if S is a substring of T and if so, where is the first occurrance?

```
function k = FindCopy(S,T)
% S and T are strings.
% If S is not a substring of T,
% then k=0.
% Otherwise, k is the smallest
% integer so that S is identical
% to T(k:k+length(S)-1).
```

A DNA Search Problem

S: `ACCT'

T: `ATGACCTGA'

strcmp(S,T(1:4)) False

A DNA Search Problem

- S: `ACCT'
- T: `ATGACCTGA'

strcmp(S,T(2:5)) False

A DNA Search Problem

S: `ACCT'

T: `ATGACCTGA'

strcmp(S,T(3:6)) False

A DNA Search Problem

- S: `ACCT'
- T: `ATGACCTGA'

strcmp(S,T(4:7))) True

Pseudocode

```
First = 1; Last = length(S)
while S is not identical to T(First;Last)
        First = First + 1;
        Last = Last + 1
end
```

Subscript Error

S: 'ACCT'

T: `ATGACTGA'

strcmp(S,T(6:9))

There's a problem if S is not a substring of T.

Pseudocode

```
First = 1; Last = length(s)
```

```
while Last<=length(T) && ...
~strcmp(S,T(First:Last))</pre>
```

```
First = First + 1;
Last = Last + 1
end
```

Post-Loop Processing

Loop ends when this is false:

Last<=length(T) && ...
~strcmp(S,T(First:Last))</pre>

Post-Loop Processing if Last>length(T) % No Match found k=0; else % There was a match k=First; end

The loop ends for one of two reasons.

Numeric/String Conversion

String-to-Numeric Conversion

An example...

Convention: w07629N4226

Longitude: 76° 29' West Latitude: 42° 26' North

Numeric-to-String Conversion

- x = 1234; s = int2str(x); % s = `1234'
- x = pi;
- s = num2str(x,'%5.3f'); %s =`3.142'

Problem

Given a date in the format

`mm/dd'

specify the next day in the same format

Y = Tomorrow(x)			
	x	У	
	02/28	03/01	
	07/13	07/14	
	12/31	01/01	


```
L = [31 28 31 30 31 30 31 31 30 31 30 31];
if day+1<=L(month)
% Tomorrow is in the same month
    newDay = day+1;
    newMonth = month;
```

```
L = [31 28 31 30 31 30 31 31 30 31 30 31];
else
% Tomorrow is in the next month
    newDay = 1;
    if month <12
        newMonth = month+1;
    else
        newMonth = 1;
    end
```

The New Day String Compute newDay (numerical) and convert... d = int2str(newDay); if length(d)==1 d = ['0' d]; end

The New Month String

Compute newMonth (numerical) and convert... m = int2str(newMonth);

if length(m)==1; m = ['0' m]; end

The Final Concatenation

$$y = [m '/' d];$$