

Affirmations

```
>> n = 1000000;
>> x = randn(n,1);
>> ave = sum(x)/n
ave =
    -0.0017
>> standDev = std(x)
standDev =
    0.9989
```


Not a Syntax Error					
$\gg x = rand(2)$	3)				
x - 0 9501	0 4860	0 4565			
0.9301	0.4000	0.4303			
0.2311	0.8913	0.0185			
0.6068	0.7621	0.8214			
You probably meant to say $x = rand(3, 1)$.					

A. Yes

B. No

Nol How x changes: After 1st pass: [0 0] After 2^{nd} pass: [0 0 0 0] After 3rd pass: [0 0 0 0 0 0 0 0] So y = x(7) makes sense.

Normalize

```
function [xNew,yNew] = Normalize(x,y)
```

d = max(sqrt(x.^2 + y.^2)); xNew = x/d; yNew = y/d;

Applied to a vector, max returns the largest value in the vector.

Operation 3: Smooth

Obtain a new polygon by connecting the midpoints of the edges

Smooth
<pre>function [xNew,yNew] = Smooth(x,y)</pre>
<pre>n = length(x); xNew = zeros(n,1); yNew = zeros(n,1);</pre>
<pre>for i=1:n Compute the mdpt of ith edge. Store in xNew(i) and yNew(i) end</pre>

Smooth				
<pre>for i=1:n xNew(i) = (x(i) + x(i+1))/2; yNew(i) = (y(i) + y(i+1))/2; end</pre>				
Will result in a subscript out of bounds error when i is n.				

Smooth						
for i=1:n						
if i <n< td=""><td></td><td></td><td></td><td></td></n<>						
xNew(i)	=	(x(i)	+	x(i+1))/2;		
yNew(i)	=	(y(i)	+	y(i+1))/2;		
else						
xNew(n)	=	(x(n)	+	x(1))/2;		
yNew(n)	=	(y(n)	+	y(1))/2;		
end						
end						

Smooth

```
for i=1:n-1
    xNew(i) = (x(i) + x(i+1))/2;
    yNew(i) = (y(i) + y(i+1))/2;
end
xNew(n) = (x(n) + x(1))/2;
yNew(n) = (y(n) + y(1))/2;
```

Proposed Simulation

Create a polygon with randomly located vertices.

Repeat:

Centralize Normalize Smooth

