L14. Arrays and Functions

Functions with array parameters.

Row and column vectors
Built-Ins: length, zeros, std Revisit: rand, randn, max

Row and Column Vectors

$$
\begin{aligned}
& \text { >> } \mathrm{V}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \text { v = } \\
& 123 \\
& \gg v=[1 ; 2 ; 3] \\
& \text { v = } \\
& 1 \text { Observe } \\
& 2 \text { semicolons } \\
& 3
\end{aligned}
$$

rand (\square, \square)		
>> $x=r a n d(3,1)$		
x =		
0.7085		
0.7839		
>> $\mathrm{x}=\operatorname{rand}(1,3)$		
0.9862	0.4733	0.9028

$\operatorname{randn}(\square, \square)$

- >> $\mathbf{x}=\operatorname{randn}(1,3)$
-x $=$
- 0.2877 -1.1465 1.1909
- >> x $=$ randn $(3,1)$
-x $=$
- 1.1892
- $\quad-0.0376$
- 0.3273

Normal Distribution with Zero Mean and Unit STD

Affirmations

```
>> n = 1000000;
>> x = randn (n,1);
>> ave = sum(x)/n
ave =
    -0.0017
>> standDev = std(x)
standDev =
    0.9989
```

Augmenting Row Vectors
$\gg x=\left[\begin{array}{ll}10 & 20\end{array}\right]$
$\mathbf{x}=$
1020
$\gg x=\left[\begin{array}{ll}x & 30\end{array}\right]$
$\mathbf{x}=$
$10 \quad 2030$
>>

Augmenting Column Vectors

```
>> x = [10;20]
x =
        1 0
    20
>> x = [x ; 30]
x =
        10
            20
    30
Observe semicolons!
```


"Concatenating" Column Vectors
>> $x=[10 ; 20] ;$
>> $\mathrm{y}=[30$; 40 ; 50];
>> z = [x ; y]
z =
10
20
30
40
Observe semicolons!

Application

Plot sine across [$0,4^{\star}$ pi] and use the fact that it has period 2 pi.
$x=\operatorname{linspace}(0,2 *$ pi, 100$)$;
$y=\sin (x)$;
$x=[x \quad x+2 * p i] ;$
$y=[y y] ;$
plot(x,y)

Dimension Mismatch

>> $x=[1 ; 2]$
x =
1
2
$\gg y=\left[\begin{array}{ll}3 & 4\end{array}\right]$
$y=34$

>> $z=x+y$

??? Error using ==> plus
Matrix dimensions must agree

16
25
36
49
x = [];
for $k=1: 50$
if floor(sqrt(k))==sqrt(k $\quad 9$ $\mathrm{x}=[\mathrm{x} ; \mathrm{k}] ;$

The Empty Vector

end
end
$\mathbf{x}=\mathbf{x}$

A Style Hint

Assume n is initialized.

```
a = zeros(1,n)
    a = [ ];
for k=1:n
    a(k) = sqrt(k);
end
```



```
Better because it reminds you of the size and shape of the array you set up.
```

```
Error: Out-ofRange Subscript
>> x = [10 20 30]
x =
    10 20 30
>> c = x(4)
??? Index exceeds matrix
    dimensions.
```

This is OK...

```
>> x = [ 10 20 30]
x =
    10 20 30
    >> x(4) = 100
    x =
    10 20 30 100
```

Forgot the Semicolon?
> $\mathrm{x}=\operatorname{randn}(1000000,1)$

Remember: ctrl-C

Forgot the Semicolon?
>> $\mathrm{x}=\operatorname{randn}(1000000,1)$
Forgot the Semicolon?
$\gg \mathbf{x}=\operatorname{randn}(1000000,1)$
Remember: ctrl-C

Question Time

$\mathrm{A}=\left[\begin{array}{ll}\text { [}\end{array}\right]$;
while (length (A) < 5)
$\mathrm{A}=[$ length $(\mathrm{A})+1$; A$]$;
end
$\mathrm{A}=\mathrm{A}$
Is this the same as
$\mathrm{A}=$ linspace $(1,5,5) \quad$?
A. Yes
B. No

Question Time

$$
\begin{aligned}
& x=\text { zeros }(1,1) ; \\
& \text { for } k=1: 3 \\
& \quad x=[x \quad x] ; \\
& \text { end } \\
& y=x(7)
\end{aligned}
$$

Will this cause a subscript out of bounds error?
A. Yes
B. No

Polygon Transformations

Functions \& arrays

Operation 1: Centralize

Move a polygon so that the centroid of its vertices is at the origin.

Centralize

function [xNew,yNew] = Centralize(x, y)
$\mathrm{n}=$ length (x);
x Bar $=\operatorname{sum}(x) / n ; \quad$ Computes
yBar $=\operatorname{sum}(\mathrm{y}) / \mathrm{n} ; \quad$ the vertices
xNew $=\mathbf{x}$-xBar; of the new $y^{\text {New }}=\mathrm{y}$-yBar; \quad polygon

Notice how length is used to figure out the size of the incoming vectors.

Operation 2: Normalize

Shrink (enlarge) the polygon so that the vertex furthest from the $(0,0)$ is on the unit circle.

Normalize
function [xNew, yNew] = Normalize (x, y)
$\mathrm{d}=\max \left(\operatorname{sqrt}\left(x \cdot{ }^{\wedge} 2+\mathrm{y} \cdot{ }^{\wedge} 2\right)\right)$;
xNew $=x / d$;
yNew $=y / d ;$

Applied to a vector, max returns the largest value in the vector.

Operation 3: Smooth

Obtain a new polygon by connecting the midpoints of the edges

Smooth
function [xNew,yNew] $=$ Smooth (x, y)
n = length $(x) ;$
xNew $=$ zeros $(n, 1) ;$
yNew $=$ zeros $(n, 1) ;$
for i=1:n
Compute the mdpt of ith edge.
Store in xNew (i) and yNew (i)
end

Smooth

```
    for i=1:n
```

 \(x N e w(i)=(x(i)+x(i+1)) / 2 ;\)
 \(y\) New (i) \(=(y(i)+y(i+1)) / 2 ;\)
 end
 Will result in a subscript
out of bounds error when i is n.

Smooth

```
for i=1:n
    if i<n
        xNew(i) = (x(i) + x(i+1))/2;
        yNew(i) = (y(i) + y(i+1))/2;
    else
        xNew (n) = (x(n) + x(1))/2;
        yNew (n) = (y (n) + y (1))/2;
    end
end
```


Proposed Simulation

Create a polygon with randomly located vertices.

Repeat:

Centralize
Normalize
Smooth

