L13. More on Arrays

The Square Bracket

These are equivalent:

\[
x = \text{linspace}(0,1,5)
\]

\[
x = [0.00 0.25 0.50 0.75 1.00]
\]

Handy for setting up "short" vectors.

Three “Short Vector” Examples

Plotting a Line Segment

This draws a line segment that connects (1,2) and (3,4):

```
a = 1;
b = 2;
c = 3;
d = 4;
plot([a c],[b d])
```

A natural mistake:

```
plot([a b],[c d])
```

Drawing Little Polygons

This draws an L-by-W rectangle with lower left corner at (a,b):

```
x = [a a+L a+L a a];
y = [b b b+W b+W b];
plot(x,y)
```

Coloring Little Polygons

This draws an L-by-W rectangle with lower left corner at (a,b) and colors with the color named by c:

```
x = [a a+L a+L a a];
y = [b b b+W b+W b];
fill(x,y,c)
```

Connect (a,b) to (a+L,b) to (a+L,b+W) to (a,b+W) to (a,b) and then fill it in.
Built-In Function Fill

```matlab
fill( , , )
```

Vectors that specify the vertices of a polygon.

Specify the fill-in color.

```
x = [0.11 -0.99 -0.78 0.95]
y = [0.99 0.08 -0.62 -0.30]
fill(x,y,'y')
```

DrawRect

```matlab
function DrawRect(a,b,L,W,c)
x = [a a+L a+L a a];
y = [b b b+W b+W b];
fill(x,y,c)
```

Color is a 3-vector

Any color is a mix of red, green, and blue.

Represent a color with a length-3 vector and an “rgb convention”.

```
c = [0.25 0.63 0.00]
```

red value between 0 and 1
green value between 0 and 1
blue value between 0 and 1

Some Favorites

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>[0 0 0]</td>
</tr>
<tr>
<td>Blue</td>
<td>[0 0 1]</td>
</tr>
<tr>
<td>Green</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>Cyan</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>Red</td>
<td>[1 0 0]</td>
</tr>
<tr>
<td>Magenta</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>Yellow</td>
<td>[1 1 0]</td>
</tr>
<tr>
<td>Black</td>
<td>[1 1 1]</td>
</tr>
</tbody>
</table>

A Problem

Display all colors \([r \ g \ b]\) where

- \(r\) ranges over the values
 0.00 0.25 0.50 0.75 1.00
- \(g\) ranges over the values
 0.00 0.25 0.50 0.75 1.00
- \(b\) ranges over the values
 0.00 0.25 0.50 0.75 1.00
Preliminary Notes

There will be $5 \times 5 \times 5 = 125$ colors to display.

To display a color, we will draw a unit square with that color.

Script Derivation

for $r = 0:.25:1$
 Display all colors with red value r.
end

Refine This!

for $r = 0:.25:1$
 for $g = 0:.25:1$
 Display all colors with red value r and green value g.
 end
end

Refine This!

for $r = 0:.25:1$
 for $g = 0:.25:1$
 for $b = 0:.25:1$
 Display the color with red value r, green value g, and blue value b.
 end
 end
end

Refine This!

for $r = 0:.25:1$
 for $g = 0:.25:1$
 for $b = 0:.25:1$
 c = [r g b];
 fill([0 1 1 0],[0 0 1 1],c)
 end
 end
end

Done!

Subscripts

It is possible to access and change specific entries in an array.

$x: \begin{bmatrix} 0.00 & 0.25 & 0.50 & 0.75 & 1.00 \end{bmatrix}$

The value of $x(1)$ is 0.00.
The value of $x(2)$ is 0.25.
The value of $x(3)$ is 0.50.
The value of $x(4)$ is 0.75.
The value of $x(5)$ is 1.00.
It is possible to access and change specific entries in an array.

\[
x = [\begin{array}{c} 0.00 \ 0.25 \ 0.50 \ 0.75 \ 1.00 \end{array}]
\]

\[
a = x(1) = 0.00
\]
\[
a = x(2) = 0.25
\]
\[
a = x(3) = 0.50
\]
\[
a = x(4) = 0.75
\]
\[
a = x(5) = 1.00
\]

\[
\text{for } k = 1:5
\]
\[
a = x(k)
\]
\[
\text{end}
\]

\[
a = x(1)+x(2) = 0.25
\]
\[
a = x(2)+x(3) = 0.75
\]
\[
a = x(3)+x(4) = 1.25
\]
\[
a = x(4)+x(5) = 1.75
\]

This
\[
x = \text{linspace}(a,b,n)
\]
is equivalent to this
\[
h = (b-a)/(n-1);
\]
\[
\text{for } k=1:n
\]
\[
x(k) = a + (k-1)*h;
\]
\[
\text{end}
\]
Subscripts

\[h = \frac{(b-a)}{(n-1)}; \]
\[\text{for } k=1:n \]
\[x(k) = a + (k-1)*h; \]
\[\text{end} \]

Only now we compute where to put it.

Recipe for a value

Where to put it.*

A Problem

Click in the three vertices of a triangle.

Display the triangle.

Compute the centroid \((x_c,y_c)\).

Highlight the centroid and the vertices.

Connect each vertex to the centroid.

Clicking in the Vertices

The command

\[[x,y] = \text{ginput}(3)\]

will assign the xy coordinates of the clicks to the arrays \(x\) and \(y\).

Clicks: \((1,2), (3,4), (5,6)\)

\[x: \begin{array}{c} 1 \ 3 \ 5 \end{array} \quad y: \begin{array}{c} 2 \ 4 \ 6 \end{array} \]

Display the Triangle

\[\text{fill}(x,y,'y')\]

Compute the Centroid

The \(x\) coordinate of the centroid is the average of the \(x\)-coordinates of the vertices. Ditto for \(y\)-coordinate.

\[x_c = \frac{(x(1) + x(2) + x(3))}{3}; \]
\[y_c = \frac{(x(1) + y(2) + y(3))}{3}; \]

Highlight the Vertices and Centroid

\[\text{plot}(x,y,'ok',x_c,y_c,'*k')\]
Connect Each Vertex to the Centroid

```matlab
plot([xc x(1)], [yc y(1)])
plot([xc x(2)], [yc y(2)])
plot([xc x(3)], [yc y(3)])
```

Overall

```matlab
[x, y] = ginput(3)
fill(x, y, 'y')
hold on
xc = (x(1) + x(2) + x(3)) / 3;
yc = (y(1) + y(2) + y(3)) / 3;
plot(x, y, 'ok', xc, yc, '*k')
plot([xc x(1)], [yc y(1)])
plot([xc x(2)], [yc y(2)])
plot([xc x(3)], [yc y(3)])
```

More General

```matlab
n = 3;
[x, y] = ginput(n)
fill(x, y, 'y')
xc = sum(x) / n;
yc = sum(y) / n;
plot(x, y, 'ok', xc, yc, '*k')
for k=1:n
    plot([xc x(k)], [yc y(k)])
end
```

Question Time

What is the output?

```matlab
x = [10 20 30];
y = [3 1 2]
k = y(3) - 1;
z = x(k+1)
```

A. 11 B. 20 C. 21 D. 30 E. 31

A Problem

Plot the function \(y = \sin(x) \) across \([0, 2\pi]\) but add random noise if

\[
\frac{2\pi}{3} \leq x \leq \frac{4\pi}{3}
\]

In particular, use \(\sin(x) + 1 \cdot \text{randn}(1) \) if \(x \) is in this range.

Solution

```matlab
x = linspace(0, 2*pi, n);
y = sin(x);
for k=1:n
    if 2*pi/3 <= x(k) && x(k) <= 4*pi/3
        y(k) = y(k) + 1*randn(1);
    end
end
plot(x, y)
axis([0 2*pi -1.2 1.2])
```

x range: [0 2pi] y range: [-1.2 1.2]
Problem

On a black background, randomly generate 10 stars. (A "constellation").

Repeat many times:

```matlab
for k=1:10
    Redraw the k-th star using black or yellow with equal probability
end
```

To Simulate Twinkling...

```matlab
X = rand(1,10); y = rand(1,10);
for k = 1:100
    for j=1:10
        if rand < .5
            DrawStar(x(j),y(j),r,'k')
        else
            DrawStar(x(j),y(j),r,'y')
        end
    pause(.01)
end
```

Subscripting Review

```matlab
for j=1:3
    DrawStar(a(j),b(j),.1,'y')
end
```

```
\begin{array}{c}
a: 3 & 1 & 7 \\
b: 2 & 8 & 4 \\
\end{array}
```

```matlab
j=2
DrawStar(1,8,.1,'y')
```

```matlab
j=3
DrawStar(7,4,.1,'y')
```

Subscripting Review

```matlab
for j=1:3
    DrawStar(a(j),b(j),.1,'y')
end
```

```
\begin{array}{c}
a: 3 & 1 & 7 \\
b: 2 & 8 & 4 \\
\end{array}
```