
L11. User-Defined Functions

Input parameters
Local Variables
Output Values

Why?

1. Elevates reasoning by hiding
details.

2. Facilitates top-down design.

3. Software management.

Elevates Reasoning

Nice to have sqrt function when
designing a quadratic equation
solver.

You get to think at the level of
ax2 + bx + c = 0

Elevates Reasoning

Easier to understand the finished
quadratic equation solving code:

:
r1 = (-b+sqrt(b^2-4*a*c))/(2*a);
r2 = (-b-sqrt(b^2-4*a*c))/(2*a);

:

Facilitates Top-Down Design

Facilitates Top-Down Design

1. Focus on how to draw the flag
given just a specification of what
the functions DrawRect and
DrawStar do.

2. Figure out how to implement
DrawRect and DrawStar.

To Specify a Function…
You describe how to use it, e.g.,

function DrawRect(a,b,L,W,c)
% Adds rectangle to current window.
% Assumes hold is on. Vertices are
% (a,b),(a+L,b),(a+L,b+W), & (a,b+W).
% The color c is one of 'r‘,'g',
%'y','b','w','k','c',or 'm'.

To Implement a Function…
You write the code so that the function
works. I.e., code that “lives up to”
the specification. E.g.,

x = [a a+L a+L a a];
y = [b b b+W b+W b];
fill(x,y,c);

Not to worry. You will understand this soon.

Software Management

Today:

I write a function
EPerimeter(a,b)

that computes the perimeter of the
ellipse

1
22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
y

a
x

Software Management

During the Next 10 years :

You write software that makes
extensive use of

EPerimeter(a,b)

Imagine 100’s of programs each with several
lines that reference EPerimeter

Software Management
After 10 years :

I discover a more efficient way to
approximate ellipse perimeters. I change
the implementation of

EPerimeter(a,b)

You do not have to change your
software at all.

Example 1. MySqrt(A)
Recall that we can approximate square
roots through the process of ractangle
averaging

L = A; W = A/L;
L = (L+W)/2; W = A/L;
L = (L+W)/2; W = A/L;
etc

Package this Idea…

L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

A User-Defined Function…

function s = MySqrt(A)
L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

A Function Begins with a Header

function s = MySqrt(A)
L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

function s = MySqrt(A)

A Function Has a Name

function s = MySqrt(A)
L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

MySqrt

Input Arguments

function s = MySqrt(A)
L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

A

Output Arguments

function s = MySqrt(A)
L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

s

Think of MySqrt as a Factory

A s

= Our method for approximating sqrt(A)

MySqrt

Hidden Inner Workings

A s

Can use MySqrt w/o knowing how it works.

MySqrt

Practical Matters

function s = MySqrt(A)
L = A; W = A/L;
for k=1:10

L = (L+W)/2; W = A/L;
end
s = (L+W)/2;

The code sits in a separate file.

MySqrt.m

Practical Matters

The .m file has the same name as the
function.

Thus, in MySqrt.m you will find an
implementation of MySqrt.

Practical Matters

The first non-comment in the file
must be the function header
statement.

E.g.,

function s = MySqrt(A)

Syntax
function = ()

Name. Same rules as variable names

List of input parameters.

List of output parameters.

Practical Matters
For now*, scripts and other Functions
that reference MySqrt must be in the
same directory.

MySqrt.mScript1.m

Script2.m

Script3.m
OtherF.m

*The path function gives greater flexibility. More later.

MyDirectory

Using MySqrt

:
r1 = (-b+MySqrt(b^2-4*a*c))/(2*a);
r2 = (-b-MySqrt(b^2-4*a*c))/(2*a);

:

Understanding Function
Calls

There is a substitution mechanism.

Local variables are used to carry out
the computations.

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

Script function

Let’s execute the script line-by-line
and see what happens during the
call to f.

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

Script function

x, y, z serve as local
variables during the
process. x is referred
to as an input parameter.

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

1 a: Green dot tells
us what the
computer is currently
doing.

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

1 a: 2x:

Control passes to the function.

The
input
value is
assigned
to x

a = 1
b = f()
c = 3

function y = f()
z = 2*x
y = z+1

1 a: 2x:

Control passes to the function.

The
input
value is
assigned
to x

2
x

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

1 a: 2 x:

4 z:

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

1 a: 2 x:

4z:

5 y:

The
last
command
is
executed

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

5 b:

1 a:

Control passes back to the calling program

After the
the value is
passed back,
the call to the
function ends and
the local variables
disappear.

a = 1
b = f(2)
c = 3

function y = f(x)
z = 2*x
y = z+1

5 b:

1 a:

3 c:

Repeat to Stress the
distinction between

local variables
and

variables in the calling program.

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

Script function

Let’s execute the script line-by-line
and see what happens during the
call to f.

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

1 z: Green dot tells
us what the
computer does next.

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

1 z: 2x:

Control passes to the function.

The
input
value is
assigned
to x

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

1 z: 2 x:

4 z:

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

1 z: 2 x:

4 z:

This does NOT change

Because
this
is the
current
context

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

1 z: 2 x:

4z:

5 y:

The
last
command
is
executed

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

5 x:

1 z:

Control passes back to the calling program

After the
the value is
passed back,
the function
“shuts down”

z = 1
x = f(2)
y = 3

function y = f(x)
z = 2*x
y = z+1

5 x:

1 z:

3 y:

x = 1;
x = f(x+1);
y = x+1

function y = f(x)
x = x+1;
y = x+1;

Question Time

A. 1 B. 2 C. 3 D. 4 E. 5

What is the output?

x = 1;
x = f(x+1);
y = x+1

function y = f(x)
x = x+1;
y = x+1;

Question Time

A. 1 B. 2 C. 3 D. 4 E. 5

What is the output?

Back to MySqrt

function s = MySqrt(A)
% A is a positive real number
% and s is an approximation
% to its square root.

The specification is given in the
form of comments just after the
header statement.

Back to MySqrt

function s = MySqrt(A)
% A is a positive real number
% and s is an approximation
% to its square root.

It must be clear, complete, and
concise.

Back to MySqrt

If ever you write a function
with no specification!!!
∞−

function s = MySqrt(A)
% A is a positive real number
% and s is an approximation
% to its square root.

