Question 1: (15 points)

(a) Implement this function:

```matlab
function tot = sumDiag(M)
    % tot is the sum of the elements on the main diagonal of numeric square matrix M.
    % A matrix is square if its number of rows and number of columns are the same.
    % Assume M is not empty. For example, if M is
    % [ 10 1 2 ; ... 
    %   0 30 99 ; ... 
    %  -3 3 20 ]
    % then tot is 60.
    %
    % THE ONLY BUILT-IN FUNCTION ALLOWED IS size.
    [nr,nc]= size(M);
    tot = 0;
    for k= 1:nr
        tot = tot + M(k,k);
    end
```

Example solution:

```matlab
[nr,nc]= size(M);
tot = 0;
for k= 1:nr
    tot = tot + M(k,k);
end
```

(b) Complete the statement below to assign to variable ch a randomly generated capital (upper case) letter; each of the 26 letters in the alphabet should be equally likely to occur. Only the built-in functions listed on the cover page of this exam are allowed.

```
ch = __________________________________________
```

% Example solutions:
%
% char(floor(rand*26) + 'A')
% char(floor(rand*26) + double('A'))
% char(floor(rand*('Z'-'A'+1)) + 'A')
% char(ceil(rand*26) - 1 + 'A')
Question 2: (30 points)

Implement this function:

```matlab
function newIm = enlargeImage(Im)

% Perform 2-d interpolation on all three layers of image data Im.
% Im is an nr-by-nc-by-3 array of type uint8 elements. The interpolated data is
% added between existing data points so array newIm (type uint8) is
% (2*nr-1)-by-(2*nc-1)-by-3.
% Use the simple average as the interpolated value (see example below).
% You may use built-in function zeros for initialization but otherwise
% DO NOT USE VECTORIZED CODE.

% Example solution:

[nr,nc,np] = size(Im);

wideIm = uint8(zeros(nr,2*nc-1,np));
newIm = uint8(zeros(2*nr-1,2*nc-1,np));

% NOTE: above initialization not necessary. OK to cast original
% matrix Im to a double and then cast newIm as uint8 at the end.

for p = 1:np
    for r = 1:nr
        for c = 1:nc-1
            wideIm(r,2*c-1,p) = Im(r,c,p);
            wideIm(r,2*c,p) = Im(r,c,p)/2 + Im(r,c+1,p)/2;
        end
        wideIm(r,2*nc-1,p) = Im(r,nc,p);
    end
end

for p = 1:np
    for c = 1:2*nc-1
        for r = 1:nr-1
            newIm(2*r-1,c,p) = wideIm(r,c,p);
            newIm(2*r,c,p) = wideIm(r,c,p)/2 + wideIm(r+1,c,p)/2;
        end
        newIm(2*nr-1,c,p) = wideIm(nr,c,p);
    end
end

% Hint: In 2-d interpolation, work with one dimension at a time. For example, you can first add the interpolated
% columns and then add the interpolated rows. For example

<table>
<thead>
<tr>
<th>One layer of ( R )</th>
<th>Interpolate columns</th>
<th>Interpolate rows</th>
</tr>
</thead>
</table>
| \[
| 250 50
| 20 100
| 10 130
| \] | \[
| 250 150 50
| 20 60 100
| 10 70 130
| \] | \[
| 250 150 50
| 20 60 100
| 15 65 115
| \] | \[
| 15 65 115
| 10 70 130
| \]
```

```
Question 3: (30 points)

(a) Implement this function:

```matlab
function z = overlap(diskA, diskB)
 % z is 1 (true) if diskA and diskB overlap; otherwise z is 0 (false).
 % diskA and diskB are each a disk structure with the following fields:
 % x: x-coordinate of center of disk
 % y: y-coordinate of center of disk
 % radius: radius of disk
 dis = sqrt((diskA.x - diskB.x)^2 + (diskA.y - diskB.y)^2);
 if dis < diskA.radius + diskB.radius
 z = 1;
 else
 z = 0;
 end
```

Example solution:

```matlab
dis = sqrt((diskA.x - diskB.x)^2 + (diskA.y - diskB.y)^2);
if dis < diskA.radius + diskB.radius
 z = 1;
else
 z = 0;
end
```

(b) Implement the following function to return the indices of disk triplets that overlap. Three disks form a triplet if every disk overlaps with each of the other two. Make effective use of function `overlap` from part (a). Your code should be efficient—avoid unnecessary iterations.

```matlab
function idx = diskTriplets(D)
 % D is a 1-d array of disk structures; each structure has fields as defined in part (a). Assume D has a length greater than 3.
 % idx is a vector of indices indicating all triplet overlap combinations. For example, % if disks 2, 4, and 5 form a triplet and disks 3, 4, and 6 form a triplet, idx % should be the vector [2 4 5 3 4 6]. Other orderings of triplets are acceptable, % however each triplet should only appear once.
 n = length(D);
 idx = [];
 for i = 1:n - 2
 for j = i + 1:n - 1
 for k = j + 1:n
 if overlap(D(i), D(j)) && overlap(D(j), D(k)) && overlap(D(i), D(k))
 idx = [idx, i, j, k];
 end
 end
 end
 end
```
Question 4: (25 points)

We will split a string into two parts at the first occurrence of a “marker.” For example, if the original string is ‘acagtttaga’ and the marker is ‘ag’, then we split the original string into these two parts: ‘ac’ and ‘agtttaga’. Note that the marker is included in the second part. Implement the following function and note the example at the bottom of the page.

```matlab
function CA = split(M, mar)
% Split each row of matrix M into two parts at the first occurrence of the marker
% (parameter mar); each part is stored in one cell in a row of 2-d cell array CA.
% M is a matrix of characters; assume M is not empty.
% mar is a vector of characters; assume mar is not empty.
% CA is an nr-by-2 cell array of strings, where nr is the number of rows in M.
% THE ONLY BUILT-IN FUNCTIONS ALLOWED ARE strcmp, size, length, cell.
% HINT: For each row, first search for the position of the marker.
% Example solution:
[nr,nc]=size(M); n=length(mar);
for r=1:nr
 % Search M(r,:) for mar
 c=1;
 while c<=nc-n+1 && ~strcmp(M(r,c:c+n-1), mar)
 c=c+1;
 end
 % Assign to row r of CA
 if c<=nc-n+1 % mar was found
 CA{r,1}= M(r,1:c-1);
 CA{r,2}= M(r,c:nc);
 else
 CA{r,1}= M(r,:);
 CA{r,2}= '';
 end
end

% Less efficient solution:

[nr,nc]=size(M); n=length(mar);
for r=1:nr
 idx=nc+1;
 for c=1:nc-n+1
 if idx==nc-n+1 && strcmp(M(r,c:c+n-1), mar)
 idx=c;
 end
 end
 CA{r,1}= M(r,1:idx-1);
 CA{r,2}= M(r,idx:nc); % if idx>nc then M(r,idx:nc) gives empty string
end
```

For example, if `mar` is the string ‘ag’ and `M` is

```matlab
['agagag'; ...
'atagtag'; ...
'ag'; ...
'aaaaaaaa']
```

Then `CA` is a 4-by-2 cell array:

Row 1: column 1 is the string 'a', column 2 is the string 'agagag'
Row 2: column 1 is the string 'atagtag', column 2 is the string 'ag'
Row 3: column 1 is the empty string, column 2 is the string 'ag'
Row 4: column 1 is the string 'aaaaaaaa', column 2 is the empty string