Question 1: (10 points)

Part (a): (4 points)

What will be displayed at the end of each fragment below? If there is an error write the word “error” in the box.

Output

\[
\begin{align*}
w &= \begin{bmatrix} 2 & 3 \end{bmatrix}; \\
x &= w(w(1)) \\
\end{align*}
\]

\[
\begin{align*}
z &= \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}; \\
&\text{for } k = 1: \text{length}(z) \\
&\quad z(k+1) = z(k); \\
&\text{end} \\
&\text{disp}(z) \\
\end{align*}
\]

Part (b): (6 points)

What will be printed when the following script is executed?

<table>
<thead>
<tr>
<th>Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=2; b=6; c=3; d= zoo(c,b); fprintf('a is %d\n', a); fprintf('b is %d\n', b); fprintf('c is %d\n', c); fprintf('d is %d\n', d);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>function a = zoo(b,c) b= b/c; a= b; fprintf('c is %d\n', c); fprintf('d is %d\n', d);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>c is 6 a is 2 b is 6 d is 0.5</td>
</tr>
</tbody>
</table>
Question 2: (20 points)

Complete each of the functions below according to the specifications. Do not use function `find`.

Part (a): (10 points)

```matlab
function h = histData(yr, maj)
% h is the data for drawing a bar graph showing the number of UNDERGRADUATE
% students in each of the 90 majors at Cornell.
% yr and maj are vectors of the same length. For a valid index k:
% yr(k) is the year code of student k. Possible values are integers
% in [1..13]; values 1,2,3,4 indicate undergraduate.
% maj(k) is the major code of student k; possible values are integers
% in [1..90].
% Assume that the length of yr (and maj) is greater than 1.
%
h= zeros(1,90); % h(i) will be the number of undergrads in major i
for k= 1:length(yr)
    if yr(k)<5
        h(maj(k)) = h(maj(k)) + 1;
    end
end
bar(1:90, h)
title('Number of UNDERGRADUATE students in each major')
```

Part (b): (10 points)

```matlab
function s = smoothVec(v)
% Smooth vector v by averaging each "interior" value with its left and right
% neighbors. s is the smoothed vector and is two components shorter than v.
% Example: If v=[-2 5 3 4 8] then s=[2 4 5]
% Assume that the length of v is greater than 2.
for k= 2:length(v)-1
    s(k-1) = (v(k-1)+v(k)+v(k+1))/3;
end
```
Question 3: (20 points)

Complete each of the functions below according to the specifications. Do not use function find.

Part (a): (6 points)

```matlab
function r = randInt(lo, hi)
% r is a uniformly random INTEGER in [lo..hi].
% lo and hi are integers and lo < hi.

r = floor(rand(1)*(hi-lo+1)) + lo;

% An alternative:
% r = ceil(rand(1)*(hi-lo+1)) + (lo-1);
```

Grading note:
rand(1) generates a number in (0,1), the open interval.

Part (b): (14 points)

```matlab
function ind = myFind(x, v)
% ind is the index of the first occurrence of value x in vector v.
% If x is not found in v then ind is 0.
% x is a scalar. v is a vector with length greater than 1.
% For full credit your code should be efficient--stop as soon as x is found.

k = 1;  % Next position to check

while k<=length(v) && v(k)~=x
    k = k+1;
end

if k>length(v)  % x not found
    ind = 0;
else
    ind = k;
end
```
Question 4: (25 points)

Write the function header for the function below. The function name is `checkLengths`. It has two input parameters, `a` and `b`, and returns two vectors, `shortV` and `longV`.

```matlab
function [shortV, longV] = checkLengths(a,b)

% a and b are vectors with length>1; assume their lengths are different.
% shortV is the shorter vector between a and b.
% longV is the longer vector between a and b.

if length(a)<length(b)
    shortV= a;  longV= b;
else
    shortV= b;  longV= a;
end
```

Complete the function below to interleave two vectors. You must use function `checkLengths` from Part (a) above as part of your solution. Do not use vectorized code!

```matlab
function v = interleave(a,b)
% Interleave the values from vectors a and b to form vector v.
% a and b are vectors with length > 1; assume their lengths are different.
% The first value in v comes from the longer vector of a and b.
% The "leftover" values from the longer vector are copied to the end of v.
% For example, if  a=[10 90 30]  and  b=[8 4 5 2 4]
%            then  v=[8 10 4 90 5 30 2 4]
% NO VECTORIZED CODE!

[S, L]= checkLengths(a,b);  % S is shorter than L

nS= length(S);
 nL= length(L);
v= zeros(1,nS+nL);  % not necessary to pre-allocate v
 iv= 1;  % next index position of vector v

% Interleave up to length of short vector
for k= 1:nS
    v(iv)= L(k);
    iv= iv+1;
    v(iv)= S(k);
    iv= iv+1;
end

% Copy over leftovers from long vector
for k= nS+1:nL
    v(iv)= L(k);
    iv= iv+1;
end
```

Question 5: (25 points)

Complete the function below to draw a set of grayscale disks arranged in a triangle. Read the specifications in the function comment. An example figure is shown on the right with \(n=6, s=0.5 \). Assume the availability of function `DrawDisk` and recall that you can specify a color in Matlab using a vector of length 3:

\[
\text{colr} = [1 1 1]; \quad \% \text{white} \\
\text{DrawDisk}(5,0,1, \text{colr})
\]

draws a white disk with radius 1 centered at (5,0). The grid lines and “color values” are shown on the diagram on the right for your convenience; you do not have to draw them.

```matlab
function grayness(n,s)
% Draw a triangle of disks; there are n disks on each side of the triangle.
% The disk in row 1 is black [0 0 0]; the disks in row n are white [1 1 1];
% the rows in between vary uniformly in grayness.
% The disks have unit radius and are spaced s units apart.
% The center of the lower left disk is at (0,0).

close all; figure; axis equal; hold on

d = 2+s;  \quad \% \text{distance from center to center}
g = 1/(n-1);  \quad \% "distance" between grayness

for r = n:-1:1
    y = (n-r)*d;
    colr = (r-1)*g;  \quad \% color for this row
    for c = 1:r
        x = (c-1)*d;
        \text{DrawDisk}(x,y,1,colr*ones(1,3))
    end
end

hold off
```

- \([0.0
-0.2 0.2 0.2]
- \([0.4 0.4 0.4]
- \([0.6 0.6 0.6]
- \([0.8 0.8 0.8]
- \([1.0 1.0 1.0]

The solution function `grayness` is implemented to draw a triangle of disks with varying grayscale, as specified by the parameters \(n \) and \(s \). The function utilizes the `DrawDisk` function to draw disks with radii specified by the color vector `colr`. The diagram illustrates the arrangement of disks and the color transition from black to white across the rows of the triangle.
% An alternate solution:

% x and y are all coordinates of the centers of the disks
\[d = 2+s; \] % distance from center to center
\[x = \text{linspace}(0, (n-1)*d, n); \]
\[y = \text{linspace}(0, (n-1)*d, n); \] % or just y=x

% colorVec stores all color values
\[g = \frac{1}{n-1}; \] % "distance" between grayness
\[\text{colorVec} = \text{linspace}(0,1,n); \]

% Draw pattern
\[
\text{for } r = n:-1:1 \\
\hspace{1cm} \text{yIndex} = n-r+1; \\
\hspace{1cm} \text{colr} = \text{colorVec}(r); \\
\hspace{1cm} \text{for } c = 1:r \\
\hspace{2cm} \% xIndex = c \\
\hspace{2cm} \text{DrawDisk}(x(c),y(yIndex),1,colr*ones(1,3)) \\
\hspace{1cm} \text{end} \\
\hspace{1cm} \text{end} \\
\text{end} \]