Question 1: (30 points)

Part (a): (2 points)
What does vector \(\mathbf{v} \) look like after the following script is executed?

\[
\begin{align*}
\mathbf{v} &= [0 \ 1]; \\
\text{for } k &= 1:3 \\
& \quad \mathbf{v} = [1 \ \mathbf{v}]; \\
\text{end}
\end{align*}
\]

Before: \(\begin{array}{c} 0 \\ 1 \end{array} \)

After: \(\begin{array}{cccc} 1 & 1 & 1 & 0 \end{array} \)

Part (b): (2 points)
What does vector \(\mathbf{w} \) look like after the following script is executed?

\[
\begin{align*}
\mathbf{w} &= [3 \ 2 \ 1]; \\
\mathbf{w}(\mathbf{w}(3)) &= \mathbf{w}(1);
\end{align*}
\]

Before: \(\begin{array}{c} 3 \\ 2 \\ 1 \end{array} \)

After: \(\begin{array}{c} 3 \\ 2 \\ 1 \end{array} \)

Part (c): (10 points)
Assume that \(a \) and \(b \) are initialized scalars with \(a < b \). Consider the following code fragment:

\[
\begin{align*}
x &= \text{linspace}(a, b, n); \\
y &= \sin(x);
\end{align*}
\]

Write an equivalent fragment that does not use function \text{linspace} and only calls the sine function with scalar input values.

\[
\begin{align*}
h &= (b-a)/(n-1); \\
\text{for } k &= 1:n \\
& \quad x(k) = a + (k-1)*h; \\
y(k) &= \sin(x(k)); \\
\text{end}
\end{align*}
\]

Question 1 continues on next page
Question 1, continued

Part (d): (6 points)

Assume that score is an initialized vector containing integer values in the interval [0,100]. (For example, score is a vector of student scores on a test). Write one statement on the blank below to complete the code fragment for drawing a histogram of the scores (with one bar for each score values 0, 1, 2, ..., 100).

```matlab
count = zeros(1,101); % count will be used to store the histogram data
for k = 1:length(score)
    count(score(k)+1) = count(score(k)+1) + 1;
end
bar(0:100, count) % draw a histogram of the scores
```

Part (e): (5 points)

Given the following function:

```matlab
function f = evaluateQuadratic(a,b,c,x)
f = a*(x^2) + b*x + c;
```

What is the output when the following script is executed?

```matlab
a=1; b=-1; c=3; x=2;
f = evaluateQuadratic(c,b,a,x)
```

Output:

```
f =
  11
```

Part (f): (5 points)

Given the following function:

```matlab
function y = flip(x)
n = length(x);
for k = 1:n
    x(n-k+1) = x(k);
end
y = x;
```

What is the output when the following script is executed?

```matlab
y = [10 20 30 40];
y = flip(y)
```

Output:

```
y =
   10  20  20  10
```
Question 2: (20 points)

Write a function \texttt{s2hms} to convert a time in seconds to a time in hours, minutes, and seconds. The function has one parameter (\texttt{sec}) and returns three numbers: \(h, m, \) and \(s \). Read the given function comment below; write the function header and the function body.

\begin{verbatim}
function [h, m, s] = s2hms(sec)
% Convert a time expressed in seconds (sec) to the number of hours (h),
% minutes (m), and seconds (s). h and m are integer values and
% 0<=m,s<60. Assume sec>=0.

h= floor(sec/3600);
sec= sec - h*3600; % OR: sec= rem(sec,3600)
m= floor(sec/60);
s= sec - m*60;
\end{verbatim}

Assume function \texttt{s2hms} has been written correctly. Write a script to print the number of times in a day that \(h>m>s \). Check whole seconds from 0 to 60×60×24-1. You must use function \texttt{s2hms} to solve this problem.

\begin{verbatim}
maxSeconds= 60*60*24-1;
count= 0; % No. of times when h>m>s
for k= 0:maxSeconds
 [h, m, s]= s2hms(k);
 if (h>m & m>s)
 count= count + 1;
 end
end
disp(sprintf('h>m>s %d times a day', count))
\end{verbatim}
Question 3: (25 points)

Complete function `drawFrame` below to draw a “frame” made up of black and white disks. Each disk is of unit radius and the lower left disk is centered at (0,0). Shown on the right is an example of a 5-by-4 frame with a spacing of 0.5 between disks. The function call to produce this example is `drawFrame(5,4,0.5)`.

Assume that function `DrawDisk` is available. To draw a black disk of unit radius at position (3,4): `DrawDisk(3,4,1,'k')`

Write only the code to draw the disks. The grid lines are provided for your convenience—you do not need to draw them.

```matlab
function drawFrame(h,w,s)
    % Draw a frame composed of h-by-w black and white disks of unit radius
    % with space s between the disks. Black disks form the border; white
    % disks are in inside. The lower left disk is centered at (0,0).
    % Assume h,w>2 and s>=0.
    axis equal
    hold on
    d = 2+s;  % distance from center to center
    for y= 0 : d : (h-1)*d
        for x= 0 : d : (w-1)*d
            if (x==0 || x==(w-1)*d || y==0 || y==(h-1)*d)  % border
                DrawDisk(x,y,1,'k')
            else
                DrawDisk(x,y,1,'w')
            end
        end
    end
    hold off
```

% An alternative
```matlab
function drawFrame(h,w,s)
    % Draw a frame composed of h-by-w black and white disks of unit radius
    % with space s between the disks. Black disks form the border; white
    % disks are in inside. The lower left disk is centered at (0,0).
    % Assume h,w>2 and s>=0.
    axis equal
    hold on
    d = 2+s;  % distance from center to center
    for r= 1:h;
        y= (r-1)*d;
        for c= 1:w;
            x= (c-1)*d;
            if (r==1 || r==h || c==1 || c==w)  % border
                DrawDisk(x,y,1,'k')
            else
                DrawDisk(x,y,1,'w')
            end
        end
    end
    hold off
```
Question 4: (25 points)

Complete function `findPrefix(p, s)` below to return the position of the first occurrence of a word that begins with string `p` in string `s`. If no word in `s` begins with string `p`, the function returns `-1`. For full credit, your algorithm should be efficient—stop after the first occurrence has been found. The only built-in functions that you may use are `length` and `strcmp`. Assume that `p` contains only lower case letters and `s` contains lower case letters and blanks. Below are four examples:

<table>
<thead>
<tr>
<th>p</th>
<th>s</th>
<th>Returned value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mat</td>
<td>there is a mat in the lab</td>
<td>12</td>
</tr>
<tr>
<td>mat</td>
<td>there is a bat in the lab</td>
<td>-1</td>
</tr>
<tr>
<td>mat</td>
<td>matt uses matlab on a mat</td>
<td>1</td>
</tr>
<tr>
<td>mat</td>
<td>format a plot in matlab</td>
<td>18</td>
</tr>
</tbody>
</table>

| 123456789111111111222222 | 0123456789012345 |

In the last example above, the word “format” in `s` includes the substring ‘mat’ but that doesn’t count since ‘mat’ does not appear in the beginning of the word.

```matlab
function k = findPrefix(p, s)
% k is the position in string s of the first occurrence of a word that
%   begins with string p
% k is -1 if no word in string s begins with string p
% p contains lower case letters only
% s contains lower case letters and blanks only

len= length(p);  % the length of the word pattern
s= [ ' ' s];  % Pad s with a leading space
k= 2;        % current index in s to start checking
found= 0;
% While prefix p is not found, check every substring s(k:k+len-1) against p
while k<=length(s)-len+1 && ~found
    if s(k-1)==' '  % only need to look for p if a blank is at s(k-1)
        found= strcmp(s(k:k+len-1), p);
    end
    k= k+1;
end
if ~found    % OR: if found==0
    k= -1;
else
    k= k-2;  % need -1 because in loop body k incremented after comparison
% need another -1 because s was padded with a leading space
end

pat= [ ' ' p];      % the word pattern to look for
len= length(pat);  % the length of the word pattern

% Pad string s with a leading blank
s= [ ' ' s];
k= 1;
% While prefix p is not found, check every substring s(k:k+len-1) against pat
while k<=length(s)-len+1 && strcmp(s(k:k+len-1), pat)==1
    k= k+1;
end
if k>length(s)-len+1  % k exceeds possible starting index, so prefix not found
    k= -1;
end
% If found, k needs no adjustment since both p and s were padded with an
% extra leading blank.
```
% the word pattern to look for
pat= [' ' p];
len= length(pat);
% the length of the word pattern

% Pad string s with a leading blank
s= [' ' s];
k= 1;
found= 0;
% While prefix p is not found, check every substring s(k:k+len-1) against pat
while k<=length(s)-len+1 && ~found
 found= strcmp(s(k:k+len-1), pat);
 k= k+1;
end
if found % OR: if found==1
 k= k-1; % need -1 because in loop body k incremented after comparison
else
 k= -1;
end

% Check first word in s
if strcmp(s(1:length(p)), p)
 k= 1;
 return
end

% Check all of s
pat= [' ' p]; % the word pattern to look for
len= length(pat); % the length of the word pattern
k= 1; % ok to start at 2 (assume s starts with a letter)
found= 0;
% While prefix p is not found, check every substring s(k:k+len-1) against pat
while k<=length(s)-len+1 && ~found
 found= strcmp(s(k:k+len-1), pat);
 k= k+1;
end
if ~found % OR: if found==0
 k= -1;
end
% If found, k needs no adjustment:
% The 1st char in pat is the padded blank, so need to add 1 to k, but
% an extra 1 was added already since in the loop body k is incremented
% after the comparison.