9. The Discrete vs
 The Continuous

Finite Arithmetic

More practice with iteration and conditionals.

Screen Granularity

After how many halvings will the disks disappear?

Xeno's Paradox

- A wall is two feet away.
- Take steps that repeatedly halve the remaining distance.
- You never reach the wall because the distance traveled after n steps =

$$
1+\frac{1}{2}+\frac{1}{4}+\ldots+1 / 2^{n}=2-1 / 2^{n}
$$

Problem: "Xeno" Disks

First disk has radius 1 and center ($1 / 2,0$).

The disks are tangent to each other and have centers on x-axis

Problem: Xeno Disks

Variable Definitions

x : the x-value of the left tangent point for a given circle.
d : the diameter of a given circle

Preliminary Notes

Pseudocode

x = 0; d = 1
for $k=1: 20$

Draw the next disk.
Update x and d.
end

Refinement

Draw the next disk

1

Draw disk with diameter d and left tangent point $(x, 0)$
■

DrawDisk(x+d/2, 0, d/2, 'y')

Refinement

Update x and d ?

Disk	x	d
1	0	1
2	$0+1$	$1 / 2$
3	$0+1+1 / 2$	$1 / 4$

Next x is current $x+$ current d. Next d is one-half current d.

Refinement

Update x and d.

$$
\downarrow
$$

Next x is current $x+$ current d. Next d is one-half current d.

$$
\begin{gathered}
d \\
x=x+d ; \\
d=d / 2 ;
\end{gathered}
$$

Solution

$x=0 ;$
d = 1;
for $k=1: 20$
DrawDisk(x+d/2, 0, d/2, 'y')

$$
\begin{aligned}
& x=x+d \\
& d=d / 2
\end{aligned}
$$

end

Output

Shouldn't there be 20 disks?

Screen is an Array of Dots*

*Called
"Pixels"

Disks smaller than the dots don't show up.
The $20^{\text {th }}$ disk has radius < 000001

Finiteness

It shows up all over the place in computing.

Plotting Continuous Functions

Can only display a bunch of dots
Another "collision" between the infinite and the finite. (More later.)

The Discrete Display of Sine

N = 100;
X_spacing = 4*pi/N;
Dot_radius = X_spacing/3;
for $k=0$: N

$$
\begin{aligned}
& x=k^{*} X _s p a c i n g ; \\
& y=\sin (x) ; \\
& \text { DrawDisk }\left(x, y, D o t _R a d i u s, r^{\prime} r^{\prime}\right)
\end{aligned}
$$

end

The Moral

To produce realistic plots/renderings you must appreciate screen granularity.

Similar Finite "Behavior" with Computer Arithmetic

Memory Hardware is finite.
Computer cannot store never-ending decimals like pi, sqrt(2), 1/3.

Question Time

Does this script print anything?
k = 0;
while 1 + 1/2^k > 1
k = k+1;
end
$\mathrm{k}=\mathrm{k}$
A. Yes B. No E. None of these

Similar "Behavior" for Computer Arithmetic

Suppose you have a calculator with a window like this:

$$
\begin{array}{|l|l|l|l|l|l|}
\hline+ & 2 & 4 & 1 & - & 3 \\
\hline
\end{array}
$$

Representing 2.41×10^{-3}

Add:

\section*{| + | 2 | 4 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

\section*{| + | 1 | 0 | 0 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Result: | + | 3 | 4 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Add:

\section*{| + | 2 | 4 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

\section*{| + | 1 | 0 | 0 | - | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Result: | + | 2 | 5 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Add:

\section*{| + | 2 | 4 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

\section*{| + | 1 | 0 | 0 | - | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Result: | + | 2 | 4 | 2 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Add:

\section*{| + | 2 | 4 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

\section*{| + | 1 | 0 | 0 | - | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Result: | + | 2 | 4 | 1 | - | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Add:

\section*{| $\left.\left.+T^{2} / 4\right]^{1} \cdot\right]^{3}$ |
| :--- |}

$+1100 \cdot 16$

Not enough room to represent . 002411

Regarding the Question...

The following loop does terminate and the concluding value of k that is displayed is 53 .

$$
\begin{aligned}
& k=0 ; \\
& \text { while } 1+1 / 2^{\wedge} k>1 \\
& \quad k=k+1 ; \\
& \text { end } \\
& k=k
\end{aligned}
$$

The Moral

To produce reliable numerical results you must appreciate floating point arithmetic.

The 1991 Patriot Missile Disaster

Elementary misperceptions about the finiteness
of computer arithmetic. 30+ died.

The Setting

External clock counts time in tenths of seconds.

Targeting software needs time to compute trajectories. The method:

Time $=(\#$ external clock ticks $) \times(1 / 10)$
The problem is here

One-Tenth in Binary

Exact:
. $00011001100110011001100110011 . .$.

Patriot System used:
. 00011001100110011001100110011...

Error $=.000000095 \mathrm{sec}$ every clock tick

Error

Time $=(\#$ external clock ticks $) \times(1 / 10)$
Error $=(\#$ external clock ticks) x
(.000000095)

After 100 hours...

Error $=(100 \times 60 \times 60 \star 10)^{\star} .000000095$
 $=.34 \operatorname{secs}$

Missed target by 500 meters.

