L3. Introduction to Conditionals

Boolean expressions
The If-Else Construct
And, or, not

What We Cannot Do

We cannot make a computation contingent upon other things.

If the value of the arithmetic expression Dice1 + Dice2 is seven, then increase the value of the variable GamesWon by one.

The If-Else Construct Solves this Problem

We will introduce this language feature by solving problems about the behavior of a given quadratic

\[q(x) = x^2 + bx + c \]

on a given interval \(L \leq x \leq R \).

Assume Variables \(b, c, L, R \) are Initialized

E.g.,

\[
\begin{align*}
b &= \text{input('Enter b':)} \\
c &= \text{input('Enter c':)} \\
L &= \text{input('Enter L':)} \\
R &= \text{input('Enter R':)}
\end{align*}
\]

The Situation

\[q(x) = x^2 + bx + c \quad \bullet \quad x_r = -b/2 \]

Write a fragment that prints "yes" if \(q(x) \) increases across the interval and "no" if it does not.

Problem 1
Solution Fragment

\[x_c = \frac{-b}{2}; \]
if \(x_c \leq L \)
\[
\text{disp('Yes')}
\]
else
\[
\text{disp('No')}
\]
end

Problem 2

Write a fragment that prints the maximum value that \(q(x) \) attains on the interval.

Maximum at \(L \)

\[q(x) = x^2 + bx + c \quad \bullet \quad x_c = \frac{-b}{2} \]

Maximum at \(R \)

\[q(x) = x^2 + bx + c \quad \bullet \quad x_c = \frac{-b}{2} \]

Depends on whether \(x_c \) is to the right or left of the interval midpoint.
Solution Fragment

\[xc = -\frac{b}{2}; \]
\[\text{Mid} = \frac{(L+R)}{2}; \]
\[\text{if } xc \leq \text{Mid} \]
\[\quad \text{maxVal} = R^2 + b*R + c \]
\[\text{else} \]
\[\quad \text{maxVal} = L^2 + b*L + c \]
\[\text{end} \]

Problem 3

Write a fragment that prints "yes" if \(xc \) is in the interval and "no" if \(xc \) is not in the interval.

Solution Fragment

\[xc = -\frac{b}{2}; \]
\[\text{if } (L \leq xc) \&\& (xc \leq R) \]
\[\quad \text{disp}(\text{‘Yes’}) \]
\[\text{else} \]
\[\quad \text{disp}(\text{‘No’}) \]
\[\text{end} \]

Illegal: \(L \leq xc \leq R \)
Saying the Opposite

xc is in the interval \([L,R]\) if

\[L \leq xc \text{ and } xc \leq R \]

xc is not in the interval \([L,R]\) if

\[xc < L \text{ or } R < xc \]

Another Solution Fragment

\[xc = -b/2; \]
\[\text{if } (xc < L) \text{ || } (R < xc) \]
\[\quad \text{disp}('No') \]
\[\quad \text{else} \]
\[\quad \text{disp}('Yes') \]
\[\quad \text{end} \]

Solution Fragment

\[xc = -b/2; \]
\[\text{if } (L \leq xc) \&\& (xc \leq R) \]
\[\quad \text{disp}('Yes') \]
\[\quad \text{else} \]
\[\quad \text{disp}('No') \]
\[\quad \text{end} \]

The if-else Construct

\[\text{if } \text{boolean expression} \]
\[\quad \text{Commands to execute if the expression if TRUE} \]
\[\text{else} \]
\[\quad \text{Commands to execute if the expression if FALSE} \]
\[\text{end} \]

Boolean Expressions

\[(xc < L) \text{ || } (R < xc) \]

Their value is either true or false.

Made up of comparisons that are either true or false.

Connected by logical operators:

and, or, not

Boolean Expressions

\[(xc < L) \text{ || } (R < xc) \]

Their value is either true or false.

Made up of other (simpler) boolean expressions that are connected by boolean operators:

and, or, not
Arithmetic Expressions

\[(x+3) \times (y-z)\]

Their value is a number.

Made up of other (simpler) arithmetic expressions that are connected by arithmetic operators:
+ , - , * , /

Relational Operators

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

The And Operator &&

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>&&</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

The Or Operator ||

| | | || |
|---|---|-----|
| F | F | F |
| F | T | T |
| T | F | T |
| T | T | T |

The not Operator ~

<table>
<thead>
<tr>
<th></th>
<th>~</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Question Time

What is the value of \(X\) and \(Y\) after the following script is executed:

\[X = 6; Y = 8;\]
\[If \ X < Y\]
\[\quad Y = Y/2;\]
\[else\]
\[\quad X = X/2;\]
\[end\]

A. \(X\) is 3 and \(Y\) is 4
B. \(X\) is 6 and \(Y\) is 8
C. \(X\) is 6 and \(Y\) is 4
D. \(X\) is 3 and \(Y\) is 8