L14. Arrays and Functions

Functions with array parameters.

Row and column vectors

Built-Ins: `length`, `zeros`, `std`
Revisit: `rand`, `randn`, `max`

Row and Column Vectors

```
>> v = [1 2 3]
v =
 1    2    3
>> v = [1 ; 2 ; 3]
v =
 1
 2
 3
```

```
zeros(   ,   )
>> x = zeros(3,1)
x =
 0
 0
 0
>> x = zeros(1,3)
x =
 0    0    0
```

```
rand(    ,    )
>> x = rand(3,1)
x =
 0.2618
 0.7085
 0.7839
>> x = rand(1,3)
x =
 0.9862    0.4733    0.9028
```

```
randn(    ,    )
• >> x = randn(1,3)
• x =
  0.2877   -1.1465    1.1909
• >> x = randn(3,1)
• x =
   1.1892
  -0.0376
   0.3273
```

Normal Distribution with Zero Mean and Unit STD

```
Distribution of randn(1000000,1)
```
Affirmations

```matlab
>> n = 1000000;
>> x = randn(n,1);
>> ave = sum(x)/n
ave =  
-0.0017
>> standDev = std(x)
standDev =  
0.9989
```

length

```matlab
>> v = randn(1,5);
>> n = length(v)
n =  
5
>> u = rand(5,1);
>> n = length(u)
n =  
5
```

Augmenting Row Vectors

```matlab
>> x = [10 20]
x =  
10   20
>> x = [x 30]  
x =  
10   20   30
```

Augmenting Column Vectors

```matlab
>> x = [10;20]
x =  
10   
20
>> x = [x ; 30]
x =  
10 
20 
30
```

“Concatenating” Row Vectors

```matlab
>> x = [10 20]
x =  
10   20
>> y = [30 40 50]
y =  
30   40   50
>> z = [x y]  
z =  
10   20   30   40   50
```

“Concatenating” Column Vectors

```matlab
>> x = [10 ; 20];
>> y = [30 ; 40 ; 50];
>> z = [ x ; y ]  
z =  
10 
20 
30 
40 
50
```

The `length` function doesn't care about row or column orientation.

Observe semicolons!
Application

Plot sine across [0,4*pi] and use the fact that it has period 2*pi.

```matlab
x = linspace(0,2*pi,100);
y = sin(x);
x = [x x+2*pi];
y = [y y];
plot(x,y)
```

The Empty Vector

```matlab
x = [];
for k=1:50
    if floor(sqrt(k))==sqrt(k)
        x = [x; k];
    end
end
x = x
```

Array Hints & Errors

```matlab
x = linspace(0,2*pi,100);
x = [ x   x+2*pi  ];
```

Not a Syntax Error

```matlab
>> x = rand(3)
x =
    0.9501    0.4860    0.4565
    0.2311    0.8913    0.0185
    0.6068    0.7621    0.8214
```

```matlab
x = rand(1,3) or x = rand(3,1).
```
A Style Hint

Assume \(n \) is initialized.

\[
a = \text{zeros}(1,n) \\
for \ k = 1:n \\
a(k) = \sqrt{k}; \\
end
\]

Better because it reminds you of the size and shape of the array you set up.

Error: Out-ofRange Subscript

\[
\text{>> } x = [10 \ 20 \ 30] \\
x = \\
10 \ 20 \ 30 \\
\text{>> } c = x(4) \\
??? \text{Index exceeds matrix dimensions.}
\]

This is OK...

\[
\text{>> } x = [10 \ 20 \ 30] \\
x = \\
10 \ 20 \ 30 \\
\text{>> } x(4) = 100 \\
x = \\
10 \ 20 \ 30 \ 100
\]

Forgot the Semicolon?

\[
\text{>> } x = \text{randn}(1000000,1) \\
\]

Forgot the Semicolon?

\[
\text{>> } x = \text{randn}(1000000,1)
\]

Question Time

\[
A = [1]; \\
\text{while}(\text{length}(A) < 5) \\
\quad A = [\text{length}(A)+1 \ \ A]; \\
\quad \text{end} \\
A = A
\]

Is this the same as

\[
A = \text{linspace}(1,5,5)
\]

\text{A. Yes} \quad \text{B. No}
No!

Linspace:
1 2 3 4 5

Fragment:
5
4
3
2
1

Question Time

x = zeros(1,1);
for k=1:3
 x = [x x];
end
y = x(7)

Will this cause a subscript out of bounds error?

A. Yes B. No

No!

How x changes:

After 1st pass: [0 0]
After 2nd pass: [0 0 0 0]
After 3rd pass: [0 0 0 0 0 0 0 0]

So y = x(7) makes sense.

Polygon Transformations

Functions & arrays

A Polygon

Operation 1: Centralize

Move a polygon so that the centroid of its vertices is at the origin.

Store xy-coordinates in vectors x and y.
Centralize

function \([xNew, yNew] = \text{Centralize}(x, y)\)
\[
\begin{align*}
n &= \text{length}(x); \\
xBar &= \frac{\text{sum}(x)}{n}; \\
yBar &= \frac{\text{sum}(y)}{n}; \\
xNew &= x - xBar; \\
yNew &= y - yBar;
\end{align*}
\]
Computes the vertices of the new polygon

Notice how \text{length} is used to figure out the size of the incoming vectors.

Operation 2: Normalize

Shrink (enlarge) the polygon so that the vertex furthest from the \((0,0)\) is on the unit circle.

Normalize

function \([xNew, yNew] = \text{Normalize}(x, y)\)
\[
\begin{align*}
d &= \max(\sqrt{x.^2 + y.^2}); \\
xNew &= x/d; \\
yNew &= y/d;
\end{align*}
\]
Applied to a vector, \text{max} returns the largest value in the vector.

Operation 3: Smooth

Obtain a new polygon by connecting the midpoints of the edges
function [xNew, yNew] = Smooth(x, y)
\n n = length(x);
 xNew = zeros(n,1);
 yNew = zeros(n,1);

 for i=1:n
 Compute the mdpt of ith edge.
 Store in xNew(i) and yNew(i)
 end

 xNew(1) = (x(1)+x(2))/2
 yNew(1) = (y(1)+y(2))/2

 xNew(2) = (x(2)+x(3))/2
 yNew(2) = (y(2)+y(3))/2

 xNew(3) = (x(3)+x(4))/2
 yNew(3) = (y(3)+y(4))/2

 xNew(4) = (x(4)+x(5))/2
 yNew(4) = (y(4)+y(5))/2

 xNew(5) = (x(5)+x(1))/2
 yNew(5) = (y(5)+y(1))/2
\[
x_{\text{New}}(4) = \frac{x(4) + x(5)}{2} \\
y_{\text{New}}(4) = \frac{y(4) + y(5)}{2}
\]

\[
x_{\text{New}}(5) = \frac{x(5) + x(1)}{2} \\
y_{\text{New}}(5) = \frac{y(5) + y(1)}{2}
\]

\[
\text{for } i=1:n \text{ } \text{ } \\
\text{if } i<n \text{ } \text{ } \\
x_{\text{New}}(i) = \frac{x(i) + x(i+1)}{2}; \\
y_{\text{New}}(i) = \frac{y(i) + y(i+1)}{2}; \\
\text{else} \text{ } \text{ } \\
x_{\text{New}}(n) = \frac{x(n) + x(1)}{2}; \\
y_{\text{New}}(n) = \frac{y(n) + y(1)}{2}; \\
\text{end} \\
\text{end}
\]

Will result in a subscript out of bounds error when i is n.

Smooth

\[
\text{for } i=1:n \text{ } \text{ } \\
x_{\text{New}}(i) = \frac{x(i) + x(i+1)}{2}; \\
y_{\text{New}}(i) = \frac{y(i) + y(i+1)}{2}; \\
\text{end}
\]

Smooth
Proposed Simulation

Create a polygon with randomly located vertices.

Repeat:
 Centralize
 Normalize
 Smooth