classdef E0 < handle
% An E0 object represents the ellipse
% \[(a*cos(t),b*sin(t))\] \[0<=t<=2\pi\]
% Such an ellipse is centered at (0,0) and has no tilt

properties (Access = protected)
a % The major semiaxis
b % The minor semi-axis (b<=a)
F1 = Point.empty(); % Focus
F2 = Point.empty(); % Focus
s % string length
end

methods
function E = E0(a,b)
% Constructs an E0 object
if a >= b
 E.a = a;
 E.b = b;
 E.F1 = Point(-sqrt(a^2-b^2),0);
 E.F2 = Point(sqrt(a^2-b^2),0);
 E.s = 2*a;
else
 disp('a cannot be smaller than b')
end
end

function A = Area(ThisE0)
% The area of the ellipse referenced by ThisE0.
 A = pi*ThisE0.a*ThisE0.b;
end

function alfa = Enclose(ThisE0,P)
% alfa is one if the point referenced by P is inside the
% ellipse referenced by ThisE0.
% Otherwise, alfa is zero.
 alfa = P.Dist(ThisE0.F1)+P.Dist(ThisE0.F2) <= ThisE0.s;
end

function Show(ThisE0,c)
% Displays the ellipse referenced by ThisE0 in the current figure window
% with color c. The two focii are also displayed. Assumes hold is % on
end
end
end

% Show E0
% Illustrates the class E0.

% Construct and display an E0 object...
E = E0(4,3);
E.Show('m')

% Construct and display a Point object...
P = Point(-2,-2);
P.Show('b')

% Display a message that indicates whether or not the ellipse referenced
% by E encloses the point referenced by P...
if E.Enclose(P)
 title('P is inside E','FontSize',14)
else
 title('P is not inside E','FontSize',14)
end
xlabel(sprintf('Area = %6.2f',E.Area()),'FontSize',14)
classdef E1 < E0

% An E1 object represents the ellipse
%
% (h+a*cos(t),kb*sin(t)) 0<=t<=2pi
% Such an ellipse is centered at (h,k) and has no tilt.
% Terminology:
% E1 is a subclass of E0. E0 is the parent of E1
% E0 is a superclass of E0. E1 is a child of E0.

properties (Access = protected)
 h % the x-coordinate of the center
 k % the y-coordinate of the center
end

methods
 function E = E1(a,b,h,k)
 % Constructs an E1 object
 % Call the superclass constructor...
 E@E0(a,b)
 E.h = h;
 E.k = k;
 E.F1.x = E.F1.x + h;
 E.F1.y = k;
 E.F2.x = E.F2.x + h;
 E.F2.y = k;
 end

 function Show(ThisE1,c)
end
end
end

% Show E1
% Illustrates the class E1.

% Construct and display an E1 object...
E = E1(4,3,5,6);
E.Show('m')

% Construct and display the untranslated version..
Eorig = E0(4,3);
Eorig.Show('r')

% Construct and display a Point object...
P = Point(-2,-2);
P.Show('b')

% Report on whether or not the ellipse referenced by E and the ellipse
% referenced by Eorig encloses the point referenced by P...

if E.Enclose(P) && Eorig.Enclose(P)
 title('P is inside E and Eorig','Fontsize',14)
elseif E.Enclose(P) && ~Eorig.Enclose(P)
 title('P is inside E but not inside Eorig','Fontsize',14)
elseif ~E.Enclose(P) && Eorig.Enclose(P)
 title('P is not inside E and is inside Eorig','Fontsize',14)
else
 title('P is not inside E and not inside Eorig','Fontsize',14)
end

% Report the area...
xlabel(sprintf('Area = %6.2f',E.Area()),'Fontsize',14)
% An E2 object represents the ellipse
% \[(h+a\cos(t),kb\sin(t))\quad 0<=t<=2\pi\]
% rotated about its center.

properties
 phi % The counterclockwise rotation angle (degrees)
end

methods
 function E = E2(a,b,h,k,phi)
 % Constructs an E2 object
 E@E1(a,b,h,k)
 E.phi = phi;
 c = cos(phi*pi/180); s = sin(phi*pi/180);
 d = sqrt(a^2-b^2);
 E.F1.x = h + c*d;
 E.F1.y = k + s*d;
 E.F2.x = h - c*d;
 E.F2.y = k - s*d;
 end

 % Displays the ellipse referenced by ThisE2 in the current figure window
 % with color c. The two focii are also displayed. Assumes hold is on
 function Show(ThisE2,c)
 end
end

% Show E2
% Illustrates the class E2.

close all
plot([-10 10],[0 0],':k',[0 0],[-10 10],':k')
axis equal
axis([-10 10 -10 10])
hold on

% Construct and display an E2 object...
E = E2(4,3,5,6,30);
E.Show('m')

% Construct and display its unrotated version centered at the origin..
Eorig = E0(4,3);
Eorig.Show('r')

% Construct and display a Point object..
P = Point(-2,-2);
P.Show('b')

% Report on whether or not the ellipse referenced by E and the ellipse
% referenced by Eorig encloses the point referenced by P...
if E.Enclose(P) && Eorig.Enclose(P)
 title('P is inside E and Eorig','Fontsize',14)
elseif E.Enclose(P) && ~Eorig.Enclose(P)
 title('P is inside E but not inside Eorig','Fontsize',14)
elseif ~E.Enclose(P) && Eorig.Enclose(P)
 title('P is not inside E and is inside Eorig','Fontsize',14)
else
 title('P is not inside E and not inside Eorig','Fontsize',14)
end

% Report the area...
xlabel(sprintf('Area = %6.2f',E.Area()),'Fontsize',14)