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Administrivia 

 

 A5P1 due tomorrow (demo slots available) 

 A5P2 out this weekend, due 4/19 

 

 Prelim 2 on Tuesday 

– Quizzes available Monday 

 

 Midterm course evaluations 
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SIFT Matching Demo 
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Last time: k-means 
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Legend 

- centers (means) 

- clusters 



k-means 

 Idea: find the centers that minimize the 
sum of squared distances to the points 

 

 Objective: 
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A greedy method for k-means 
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A greedy method for k-means 

 Unfortunately, this doesn’t work that well 

 

 The answer we get could be much worse 
than the optimum 

 

 However, if we change our objective (e.g., 
k-centers, then we get an answer within 2 
times the cost of the best answer 

 

 

 
7 

“Hill climbing” 
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Back to k-means 

 There’s a simple iterative algorithm for k-
means 

– Lloyd’s algorithm 

 

1. Start with an initial set of means 

– For instance, choose k points at random from 
the input set 

2. Assign each point to the closest mean 

3. Compute the means of each cluster 

4. Repeat 2 and 3 until nothing changes 
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Lloyd’s algorithm 

Demo 
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Lloyd’s algorithm 

 Does it always terminate? 

– Yes, it will always converge to some solution 

– Might be a local minima of the objective 
function 

 

 

 

 

– Error decreases after every iteration 

– Error could be arbitrarily bad 
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Questions? 
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Possible algorithms 

 

1. Greedy algorithms 

– Do what seems best at any given point 

– Example: making change 
 

2. Iterative algorithms 

– Start with some answer, take a small step to 
improve it, repeat until it doesn’t get better 

– Examples: Lloyd’s algorithm for k-means, 
bubble sort, hill climbing 
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Where we are so far 

 Greedy algorithms and iterative 
algorithms sometimes give the right 
answer (e.g., making change with U.S. 
currency) 
 

 Some clustering objective functions are 
easier to optimize than others: 

– k-means  very hard 

– k-centers  very hard, but we can use a 
greedy algorithm to get within a factor of two 
of the best answer 
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Back to graphs 

 We can also associate a weight with each edge 
(e.g., the distance between cities) 
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Spanning trees 

 A spanning tree of a graph is a subgraph that     
(a) connects all the vertices and (b) is a tree 

16 Spanning trees 
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Q: How many edges are there in a 

spanning tree on n vertices? 



Graph costs 

 We’ll say the cost of a graph is the sum of 
its edge weights 
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Cost = 200 + 200 + 100 +  

 400 + 300 + 100 + 

 250 + 150 + 250  =  1950 

Cost = 200 + 400 + 100 +  

 400 + 150 + 250 + 

 100 + 150 + 250  =  2000 

Minimum spanning trees 

 We define the minimum spanning tree (MST) of a 
graph as the spanning tree with minimum cost 

 (Suppose we want to build the minimum length 
of track possible while still connecting all the 
cities.) 
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MST: Cost = 1750 

(Eurorail needs to build 1750 mi of track at minimum) 



Minimum spanning trees 

 This is an optimization problem where the 
objective function is the cost of the tree 

 Can you think of a greedy algorithm to do 
this? 

19 

Paris 

Berlin 

London 

Rome 

Frankfurt 

Vienna Prague 

Naples 
Warsaw 

Hamburg 
200 

400 

100 

400 

300 

200 

150 

100 

100 

250 

150 

250 

Paris 

Berlin 

London 

Rome 

Frankfurt 

Vienna Prague 

Naples 
Warsaw 

Hamburg 

Minimum spanning tree 
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Minimum spanning tree 

 This greedy algorithm is called Kruskal’s 
algorithm 

 

 

 

 

 

 

 

 Not that simple to prove that it gives the MST 

 How many connected components are there after adding 
the kth edge? 
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Kruskal’s algorithm 

 

 Start with an empty graph 

 Sort edges by weight, in increasing order 

 Go through each edge in order 

– If adding edge creates a cycle, skip it 

– Otherwise, add the edge to the graph 
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Back to clustering 

 We can define the clustering problem on 
graphs 
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Clustering using graphs 

 Clustering  breaking apart the graph by 

cutting long edges 

 

 

 

 

 

 

 

 Which edges do we break? 
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Spacing as a clustering metric 

 Another objective function for clustering: 

– Maximize the minimum distance between 
clusters 

– (Called the spacing.) 
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spacing 

Cool fact 

 We compute the clusters with the 
maximum spacing during MST! 

 To compute the best k clusters, just stop 
MST construction k-1 edges early 
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Proof of cool fact 

 Suppose this wasn’t true – then someone 
could give us a different clustering with a 
bigger spacing 

 Let C be our MST clustering, and let D be 
the purportedly better one 

 There must be two nodes u and v in 
different clusters in D but in the same 
cluster in C 

 There’s a path between u and v in C, and 
at some point this path crosses a cluster 
boundary in D 
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Pictorial proof 
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Demo 

 http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/index.html 
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Where we are so far 

 Greedy algorithms work sometimes (e.g., 
with MST) 
 

 Some clustering objective functions are 
easier to optimize than others: 

– k-means  very hard 

– k-centers  very hard, but we can use a 
greedy algorithm to get within a factor of two 
of the best answer 

– maximum spacing  very easy!  Just do MST 
and stop early (this gives exact answer) 
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Back to image segmentation 
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Questions? 
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Greedy algorithm for graph 
coloring? 
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