Segmentation and greedy algorithms

Administrivia

- A5P1 due tomorrow (demo slots available)
- A5P2 out this weekend, due 4/19
- Prelim 2 on Tuesday
 - Quizzes available Monday
- Midterm course evaluations

SIFT Matching Demo

k-means

- Idea: find the centers that minimize the sum of squared distances to the points
- Objective:

Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters C_1, C_2, \ldots, C_k and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

$$\sum_{j=1}^k \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2$$

A greedy method for k-means

A greedy method for *k*-means

- Unfortunately, this doesn't work that well
- The answer we get could be **much** worse than the optimum
- However, if we change our objective (e.g., k-centers, then we get an answer within 2 times the cost of the best answer

Back to k-means

- There's a simple iterative algorithm for kmeans
 - Lloyd's algorithm
- 1. Start with an initial set of means
 - For instance, choose k points at random from the input set
- 2. Assign each point to the closest mean
- 3. Compute the means of each cluster
- 4. Repeat 2 and 3 until nothing changes

Cornell University

Lloyd's algorithm

<u>Demo</u>

Lloyd's algorithm

- Does it always terminate?
 - Yes, it will always converge to some solution
 - Might be a local minima of the objective function

$$\sum_{j=1}^k \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2$$

- Error decreases after every iteration
- Error could be arbitrarily bad

11

Questions?

Possible algorithms

1. Greedy algorithms

- Do what seems best at any given point
- Example: making change

2. Iterative algorithms

- Start with some answer, take a small step to improve it, repeat until it doesn't get better
- Examples: Lloyd's algorithm for k-means, bubble sort, hill climbing

Where we are so far

- Greedy algorithms and iterative algorithms sometimes give the right answer (e.g., making change with U.S. currency)
- Some clustering objective functions are easier to optimize than others:
 - k-means \rightarrow very hard
 - k-centers → very hard, but we can use a greedy algorithm to get within a factor of two of the best answer

Back to graphs

 We can also associate a *weight* with each edge (e.g., the distance between cities)

Spanning trees

A spanning tree of a graph is a subgraph that
(a) connects all the vertices and (b) is a tree

Graph costs

 We'll say the cost of a graph is the sum of its edge weights

Minimum spanning trees

- We define the *minimum spanning tree* (MST) of a graph as the spanning tree with minimum cost
- (Suppose we want to build the minimum length of track possible while still connecting all the cities.)

Minimum spanning trees

- This is an optimization problem where the objective function is the cost of the tree
- Can you think of a greedy algorithm to do this?

Minimum spanning tree

Greedy algorithm:

Minimum spanning tree

 This greedy algorithm is called Kruskal's algorithm

- Not that simple to prove that it gives the MST
- How many connected components are there after adding the kth edge?

Cornell University

Kruskal's algorithm

- Start with an empty graph
- Sort edges by weight, in increasing order
- Go through each edge in order
 - If adding edge creates a cycle, skip it
 - Otherwise, add the edge to the graph

Back to clustering

 We can define the clustering problem on graphs

Clustering using graphs

 Clustering → breaking apart the graph by cutting long edges

Which edges do we break?

Cornell University

Spacing as a clustering metric

- Another objective function for clustering:
 - Maximize the *minimum* distance between clusters

Cool fact

- We compute the clusters with the maximum spacing during MST!
- To compute the best k clusters, just stop MST construction k-1 edges early

Proof of cool fact

- Suppose this wasn't true then someone could give us a different clustering with a bigger spacing
- Let C be our MST clustering, and let D be the purportedly better one
- There must be two nodes u and v in different clusters in D but in the same cluster in C
- There's a path between u and v in C, and at some point this path crosses a cluster boundary in D

Demo

http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/index.html

Where we are so far

- Greedy algorithms work sometimes (e.g., with MST)
- Some clustering objective functions are easier to optimize than others:
 - *k*-means \rightarrow very hard
 - k-centers → very hard, but we can use a greedy algorithm to get within a factor of two of the best answer
 - maximum spacing → very easy! Just do MST and stop early (this gives exact answer)

Back to image segmentation

31

Questions?

Greedy algorithm for graph coloring?

33