Breadth-first and depth-first
traversal

CS1114
http://cs1114.cs.cornell.edu

S - s s
$emRy Cornell University
4 Computer Science

Blobs are components!

PRl oJoJofoJofo]o 0
o/olofolofo]o]o] @
o/ojlofolofo]o]o]o]o0
o/ojofolofo]o]o]o]o0
o/olofo o/olo/o]o
0o/o]o o/olo]o
0o/o]o o/olo]o
0o/o]o o/olo]o
0o/o]o o/olo]o
0o/olo olololo

%r%)} Cornell University

Finding blobs
o,0;j]0j0|0]|O0O0]|O
o,0;j0|j0|0O|0O0O|0]O

0/(0]0]|O0
0/(0]0]|O0

0/(0]|0]|O0
0/(0]|0]|O0

0O(0j{0|0|O

1
1
1
1

1

1

o(0jo0o|j0ojf0j0|jO0O|0O]O0]O
o(0jo0o|j0ojf0j0|jO0O|0O]O0]O

0(0]0]|O0

o(0j0|jO0O|0O0O]O0O]jO|0O]O0]O

%m%;% Cornell University

Finding blobs
Oj|0j|O0|jO|O0O|O0]|O
Oo/j0j|O0|jO0O|jO|0O0O|0/|O

0(0]|0]|O0
0(0]|0]|O0
0(0]|0]|O0
0(0]|0]|O0

0O(0|0|O0|O

1
1
1
1

1

1

o(0jo0o|j0jfO0Oj]O0O|O|0O0O]O0]O
o(0jo0o|j0jfO0Oj]O0O|O|0O0O]O0]O

0(0]0]|O0

0O(0[|0|]0|0]O0]O0O|0]0O0]O0

Blobs are connected components!

%r%} Cornell University

Finding components

1. Pick a 1 to start with, where you don’t
know which component it is in
- When there aren’t any, you’re done

. Give it a new component color
. Assign the same component color to each

pixel that is part of the same component

- Basic strategy: color any neighboring 1’s,
have them color their neighbors, and so on

Eié@? Cornell University
e

Strategy for finding
components

= For each vertex we visit, we color its

neighbors and remember that we need to
visit them at some point

- Need to keep track of the vertices we still need
to visit in a todo list

- After we visit a vertex, we’ll pick one of the
vertices in the todo list to visit next

= This is also called graph traversal

g@j@ Cornell University
s

Stacks and queues

= Two ways of representing a “todo list”

= Stack: Last In First Out (LIFO)
- (Think cafeteria trays)
- The newest task is the one you’ll do next

= Queue: First In First Out (FIFO)

- (Think a line of people at the cafeteria)
- The oldest task is the one you’ll do next

%@Cm%;% Cornell University

Stacks

= Two operations:

= Push: add something to the
top of the stack

= Pop: remove the thing on
top of the stack

%@;}} Cornell University

= Two operations:

= Enqueue: add something to the end of
the queue

= Dequeue: remove something from the
front of the queue

Eié@? Cornell University
e

Graph traversal

maze

= What strategy can
you use to find the

@‘ﬁ exit?
: d
e

g@j@ Cornell University
s

Graph traversal

London

Paris Frankfurt Oslo Stockholm

Hamburg

Vienna Prague
Naples

Pick a node to start with

%@Cm%;% Cornell University

Graph traversal (stack)
London
Paris Frankfurt Oslo gtockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: London
Todo list: []

%@;}} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: London
Todo list: [Paris]

%m%;% Cornell University

Graph traversal (stack)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Paris
Todo list: []

gei;?;z} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

%m%;% Cornell University

Graph traversal (stack)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Rome
Todo list: [Frankfurt, Berlin]

gei;?;z} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Rome
Todo list: [Frankfurt, Berlin, Naples]

%m%;% Cornell University

Graph traversal (stack)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Naples
Todo list: [Frankfurt, Berlin]

gei;?;z} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Berlin
Todo list: [Frankfurt]

%m%;% Cornell University

Graph traversal (stack)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Berlin
Todo list: [Frankfurt, Hamburg, Vienna]

gei;?;z} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Vienna
Todo list: [Frankfurt, Hamburg]

%m%;% Cornell University

Graph traversal (stack)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

gei;?;z} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

%m%;% Cornell University

Graph traversal (stack)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Warsaw
Todo list: [Frankfurt, Hamburg, Prague]

gei;?;z} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Prague
Todo list: [Frankfurt, Hamburg]

%m%;% Cornell University

]
Graph traversal (stack)
London
Frankfurt Oslo gtockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Hamburg
Todo list: [Frankfurt]

%@;}} Cornell University

Graph traversal (stack)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Frankfurt
Todo list: []

%@Cm%;% Cornell University

Depth-first search (DFS)

= Call the starting node the root

= We traverse paths all the way until we get
to a dead-end, then backtrack (until we
find an unexplored path)

%@;}} Cornell University

Another strategy

1. Explore all the cities that are one hop
away from the root

2. Explore all cities that are two hops away
from the root

3. Explore all cities that are three hops
away from the root

This corresponds to using a queue

%m%;% Cornell University

]
Graph traversal (queue)
London
Paris Frankfurt Oslo gtockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: London
Todo list: []

%@;}} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: London
Todo list: [Paris]

%m%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Paris
Todo list: []

gei;?;z} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

%m%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Frankfurt
Todo list: [Berlin, Rome]

gei;?;z} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Frankfurt
Todo list: [Berlin, Rome, Hamburg]

%m%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Berlin
Todo list: [Rome, Hamburg]

gei;?;z} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Berlin
Todo list: [Rome, Hamburg, Vienna]

%@Cm%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Rome
Todo list: [Hamburg, Vienna]

%@;}} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Rome
Todo list: [Hamburg, Vienna, Naples]

%m%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Hamburg
Todo list: [Vienna, Naples]

gei;?;z} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Vienna
Todo list: [Naples]

%@Cm%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo stockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Vienna
Todo list: [Naples, Prague, Warsaw |

%@;}} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Naples
Todo list: [Prague, Warsaw |

%@Cm%;% Cornell University

Graph traversal (queue)
London
Frankfurt Oslo gtockholm
Hamburg
Vienna Prague
Warsaw

Naples

Current node: Prague
Todo list: [Warsaw]

%@;}} Cornell University

Graph traversal (queue)

London

Paris Frankfurt Oslo stockholm

Hamburg

Vienna Prague

Naples

Current node: Warsaw
Todo list: []

%m%;% Cornell University

Breadth-first search (BFS)

= We visit all the vertices at the same level
(same distance to the root) before moving
on to the next level

%@;}} Cornell University

BFS vs. DFS

Breadth-first (queue) Depth-first (stack)

%m%;% Cornell University

BFS vs. DFS

(tree = graph with no cycles)

gei;?;z} Cornell University

Basic algorithms

BREADTH-FIRST SEARCH (Graph G)

= While there is an uncolored node r
- Choose a new color
- Create an empty queue Q
- Let r be the root node, color it, and add it to Q
- While Q is not empty
e Dequeue a node v from Q

e For each of v’s neighbors u
— If uis not colored, color it and add it to Q

Eié@? Cornell University
e

Basic algorithms

DEPTH-FIRST SEARCH (Graph G)

= While there is an uncolored node r
- Choose a new color
- Create an empty stack S
- Let r be the root node, color it, and push iton S
- While S is not empty
e Pop anodevfromS$S

e For each of v’s neighbors u
— If uis not colored, color it and push it onto S

g@j@ Cornell University
s

Queues and Stacks

= Examples of Abstract Data Types (ADTS)

= ADTs fulfill a contract:

- The contract tells you what the ADT can do,
and what the behavior is

- For instance, with a stack:
e We can push and pop

e If we push X onto S and then pop S, we get
back X, and S is as before

= Doesn’t tell you how it fulfills the contract

%@Cm%;% Cornell University

Implementing DFS

|\

= How can we implement a stack?
- Needs to support several operations:
— Push (add an element to the top) 256
- Pop (remove the element from the top) 42
— IsEmpty
17

gei;?;z} Cornell University

Implementing a stack

= IsEmpty
function e = IsEmpty(S)
e = (length(S) == 0);

= Push (add an element to the top)
function S = push(S, x)
S=[S x]

= Pop (remove an element from the top)
function [S, x] = pop(S)
n = length(S); x = S(n); S = S(1:n-1);
% but what happens if n = 0?

%@Cm%;% Cornell University

Implementing BFS

= How can we implement a queue?
- Needs to support several operations:

- Enqueue (add an element to back) 256
- Dequeue (remove an element from front) 42
— IsEmpty

17

= Not quite as easy as a stack...

%@;}} Cornell University

