

Breadth-first and depth-first
traversal

CS1114

http://cs1114.cs.cornell.edu

2

Blobs are components!

A 0 0 0 0 0 0 0 B 0

0 0 0 0 0 0 0 0 C 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 D 0 0 0 0 0

0 0 0 E F G 0 0 0 0

0 0 0 H 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

A C

B

D

F E

H G

3

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

4

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Blobs are connected components!

5

Finding components

1. Pick a 1 to start with, where you don’t
know which component it is in

– When there aren’t any, you’re done

2. Give it a new component color

3. Assign the same component color to each
pixel that is part of the same component

– Basic strategy: color any neighboring 1’s,
have them color their neighbors, and so on

6

 For each vertex we visit, we color its
neighbors and remember that we need to
visit them at some point

– Need to keep track of the vertices we still need
to visit in a todo list

– After we visit a vertex, we’ll pick one of the
vertices in the todo list to visit next

 This is also called graph traversal

Strategy for finding
components

Stacks and queues

 Two ways of representing a “todo list”

 Stack: Last In First Out (LIFO)

– (Think cafeteria trays)

– The newest task is the one you’ll do next

 Queue: First In First Out (FIFO)

– (Think a line of people at the cafeteria)

– The oldest task is the one you’ll do next

7

Stacks

 Two operations:

 Push: add something to the
top of the stack

 Pop: remove the thing on
top of the stack

8

Queue

 Two operations:

 Enqueue: add something to the end of
the queue

 Dequeue: remove something from the
front of the queue

9

Graph traversal

 Suppose you’re in a
maze

 What strategy can
you use to find the
exit?

10

Graph traversal

11

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Oslo
Stockholm

Pick a node to start with

12

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Current node: London
Todo list: []

Graph traversal (stack)

Oslo
Stockholm

13

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: London
Todo list: [Paris]

Oslo
Stockholm

14

2

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Paris
Todo list: []

Oslo
Stockholm

15

2

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

Oslo
Stockholm

16

2

Paris

Berlin

1

London

3

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Rome
Todo list: [Frankfurt, Berlin]

Oslo
Stockholm

17

2

Paris

Berlin

1

London

3

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Rome
Todo list: [Frankfurt, Berlin, Naples]

Oslo
Stockholm

18

2

Paris

Berlin

1

London

3

Rome

Frankfurt

Vienna Prague

4

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Naples
Todo list: [Frankfurt, Berlin]

Oslo
Stockholm

19

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

Vienna Prague

4

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt]

Oslo
Stockholm

20

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

Vienna Prague

4

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt, Hamburg, Vienna]

Oslo
Stockholm

21

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

6

Vienna Prague

4

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg]

Oslo
Stockholm

22

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

6

Vienna Prague

4

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Oslo
Stockholm

23

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

6

Vienna Prague

4

Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Oslo
Stockholm

24

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

6

Vienna Prague

4

Naples 7
Warsaw

Hamburg

Graph traversal (stack)

Current node: Warsaw
Todo list: [Frankfurt, Hamburg, Prague]

Oslo
Stockholm

25

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

6

Vienna

8

Prague

4

Naples 7
Warsaw

Hamburg

Graph traversal (stack)

Current node: Prague
Todo list: [Frankfurt, Hamburg]

Oslo
Stockholm

26

2

Paris

5

Berlin

1

London

3

Rome

Frankfurt

6

Vienna

8

Prague

4

Naples 7
Warsaw

9 Hamburg

Graph traversal (stack)

Current node: Hamburg
Todo list: [Frankfurt]

Oslo
Stockholm

27

2

Paris

5

Berlin

1

London

3

Rome

10

Frankfurt

6

Vienna

8

Prague

4

Naples 7
Warsaw

9 Hamburg

Graph traversal (stack)

Current node: Frankfurt
Todo list: []

Oslo
Stockholm

Depth-first search (DFS)

 Call the starting node the root

 We traverse paths all the way until we get
to a dead-end, then backtrack (until we
find an unexplored path)

28

2

5

1

3

10

6 8

4
7

9

Another strategy

29

1. Explore all the cities that are one hop
away from the root

2. Explore all cities that are two hops away
from the root

3. Explore all cities that are three hops
away from the root

 …

 This corresponds to using a queue

30

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Current node: London
Todo list: []

Graph traversal (queue)

Oslo
Stockholm

31

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: London
Todo list: [Paris]

Oslo
Stockholm

32

2

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Paris
Todo list: []

Oslo
Stockholm

33

2

Paris

Berlin

1

London

Rome

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

Oslo
Stockholm

34

2

Paris

Berlin

1

London

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Frankfurt
Todo list: [Berlin, Rome]

Oslo
Stockholm

35

2

Paris

Berlin

1

London

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Frankfurt
Todo list: [Berlin, Rome, Hamburg]

Oslo
Stockholm

36

2

Paris

4

Berlin

1

London

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg]

Oslo
Stockholm

37

2

Paris

4

Berlin

1

London

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg, Vienna]

Oslo
Stockholm

38

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna]

Oslo
Stockholm

39

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

Hamburg

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna, Naples]

Oslo
Stockholm

40

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

Vienna Prague

Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Hamburg
Todo list: [Vienna, Naples]

Oslo
Stockholm

41

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

7

Vienna Prague

Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Vienna
Todo list: [Naples]

Oslo
Stockholm

42

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

7

Vienna Prague

Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Vienna
Todo list: [Naples, Prague, Warsaw]

Oslo
Stockholm

43

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

7

Vienna Prague

8

Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Naples
Todo list: [Prague, Warsaw]

Oslo
Stockholm

44

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

7

Vienna

9

Prague

8

Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Prague
Todo list: [Warsaw]

Oslo
Stockholm

45

2

Paris

4

Berlin

1

London

5

Rome

3

Frankfurt

7

Vienna

9

Prague

8

Naples 10
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Warsaw
Todo list: []

Oslo
Stockholm

Breadth-first search (BFS)

 We visit all the vertices at the same level
(same distance to the root) before moving
on to the next level

46

2

4

1

5

3

7 9

8
10

6

BFS vs. DFS

47

2

5

1

3

10

6 8

4
7

9
2

4

1

5

3

7 9

8
10

6

Breadth-first (queue) Depth-first (stack)

BFS vs. DFS

48

(tree = graph with no cycles)

Basic algorithms

BREADTH-FIRST SEARCH (Graph G)

 While there is an uncolored node r

– Choose a new color

– Create an empty queue Q

– Let r be the root node, color it, and add it to Q

– While Q is not empty

• Dequeue a node v from Q

• For each of v’s neighbors u

 If u is not colored, color it and add it to Q

49

Basic algorithms

DEPTH-FIRST SEARCH (Graph G)

 While there is an uncolored node r

– Choose a new color

– Create an empty stack S

– Let r be the root node, color it, and push it on S

– While S is not empty

• Pop a node v from S

• For each of v’s neighbors u

 If u is not colored, color it and push it onto S

50

Queues and Stacks

 Examples of Abstract Data Types (ADTs)

 ADTs fulfill a contract:

– The contract tells you what the ADT can do,
and what the behavior is

– For instance, with a stack:

• We can push and pop

• If we push X onto S and then pop S, we get
back X, and S is as before

 Doesn’t tell you how it fulfills the contract

51

Implementing DFS

 How can we implement a stack?

– Needs to support several operations:

– Push (add an element to the top)

– Pop (remove the element from the top)

– IsEmpty

52

256

42

17

Implementing a stack

 IsEmpty

function e = IsEmpty(S)

 e = (length(S) == 0);

 Push (add an element to the top)

 function S = push(S, x)

 S = [S x]

 Pop (remove an element from the top)

function [S, x] = pop(S)

 n = length(S); x = S(n); S = S(1:n-1);

 % but what happens if n = 0?

53

Implementing BFS

 How can we implement a queue?

– Needs to support several operations:

– Enqueue (add an element to back)

– Dequeue (remove an element from front)

– IsEmpty

 Not quite as easy as a stack…

54

256

42

17

