
CS1114 Assignment 6
out: Friday, April 20, 2012.
due: Friday, April 27, 2012, 5PM.

In this assignment, you will implement an authorship detector which, when given a
large sample size of text to train on, can then guess the author of an unknown text.

You can find stub files in the directory /courses/cs1114/student_files/A6/. There is
also training and testing data in the TrainingData and TestData subdirectories.

1 Detecting authorship

The algorithm you will implement works based on the following idea: An author’s
writing style can be defined quantitatively by looking at the words he or she uses, and
the order in which the words appear. Some authors use certain words—and certain
pairs of words—more or less often than other authors.

To make things significantly simpler, we’re going to assume that the author always
follows a given word—“the”, for instance—with the same distribution of other words.
Of course, this isn’t true in reality, since the words one chooses when writing de-
pends on context. Nevertheless, this simplifying assumption should hold over a large
amount of text, where context becomes less relevant.

In order to implement this model of an author’s writing style, we will use a Markov
chain to model text as a sequence of words. As we learned in lecture, a Markov
chain is a set of states—in this case, words—with the Markov property—that is, the
probability of a word appearing at a given position depends only on the previous word.

As we saw, a Markov chain can be represented as a directed graph, weighted by
probabilities. Each node is a state (again, words, in our case), and a directed edge
going from state Si to Sj represents the probability we will go to Sj next when we’re
currently at Si. We will implement this directed graph as a transition matrix. Given
a set of possible words {W1,W2, ...Wn}, you will construct an n × n transition matrix
P , where Pij is the probability of a transition from word Wi to word Wj.

The edges, in this case, represent the probability that word j follows word i from
the given author. Among other things, this means that the sum of the weights of all
outgoing edges from each word must add up to 1.

For each author, we can construct a transition matrix from a large sample text corpus
of that author’s writing (for instance, one or more novels from that author). Our next
step is to determine the author of an unknown, short chunk of text. To do this, we
simply compute the probability of this unknown text occurring, using the words in
that order, from each of our Markov chains. We will then attribute the text to the the
author with the highest likelihood.

You will implement the Markov chain model of writing style. We have given you some
sample texts from a number of authors for you to train your model on, as well as some
test data that you can use to evaluate your code.

1



2 Constructing the transition matrix

The first step is to construct the transition matrix representing our Markov chain.
First, you must read the text from a sample file. To do so, you can use the Matlab
command fopen to open a file (e.g., TrainingData/Austen/all.txt) and textscan to
read the text into a cell array (making sure to fclose the file once you’re done reading
it).

f = fopen(’filename.txt’, ’r’); % open the file for reading

cell = textscan(f, ’%s’); % read each space-delimited word into a cell array

fclose(f); % close the file

D = cell{1}; % the array we’re interested in is actually the

% first element of ’cell’

The cell array D above will contain all the space-delimited words read by textscan as
strings. (Note that the textscan function isn’t smart enough to split out punctuation
or deal with capitalization. These are things you must do yourself if you so choose.)

Once you have the cell array of words, you must count the number of unique words
appearing in that particular text corpus. This is necessary for knowing the size of the
transition matrix. You can do so with the use of a hash table, as we covered in section.
Recall that you can create a Java hash table using the following Matlab code:

hashtable = java.util.Hashtable;

Recall that an entry into a hash table has a key and a value—the key is used as
the index into the hash table, and the value is what gets stored there (for this class,
we are not worried about how a hash table is implemented, although this is a very
interesting topic in itself). With hash tables in Matlab (which, confusingly, are really
Java hash tables, but this is also a topic for another day), you can add an entry using
the put function, and retreive an entry with the get function. Getting a key which
hasn’t been previously added returns an empty matrix:

hashtable = java.util.Hashtable;

hashtable.put(’llama’, 10);

hashtable.get(’llama’); % Returns 10

hashtable.get(’platypus’); % Returns []

For this assignment, you will probably find it very useful to create two hash tables:
one that maps each word (encoded as a string) to a location (row/column index) in
your transition matrix (we will call this the dictionary for the transition matrix), and
the other that does the inverse, storing a mapping from each word’s location to the
word itself.

Once this is done, you can construct a transition matrix from the words in your cell
array. You will want to create a sparse array using the Matlab sparse function, oth-
erwise you will very likely run out of memory. Along with the transition matrix,

2



you will be creating a corresponding histogram vector that contains word frequen-
cies (normalized by the total number of words in the document (including repeated
words)). For instance, if 5% of the words in the document are and, the entry of this
vector corresponding to the word and would be 0.05.

You will write this in a function called build transition matrix, which takes in a
filename, and returns the transition matrix, the dictionary, the inverse dictionary,
and the histogram of word frequencies.

=⇒ Write the function build_transition_matrix.m.

3 Calculating likelihood

Once you have your transition matrix, you can calculate the likelihood of an unknown
sample of text. We have included for you several pieces of literature by various au-
thors, as well as excerpts from each of the authors. Your goal is to identify the authors
of each excerpt.

To do so, you will need to calculate the likelihood of the excerpt occurring in each au-
thor’s transition matrix. Recall that each edge in the directed graph that the transi-
tion matrix represents is the probability that the author follows a word with another.
You can load the text of the excerpt into Matlab using fopen and textscan in the same
way as before.

Since you will be multiplying numerous possibly small probabilities together, your
calculated likelihood will likely be extremely small. Thus, you should compare log(likelihood)
instead. Keep in mind the possibility that the author may have used a word he has
never used before. Your calculated likelihood should not eliminate an author com-
pletely because of this. Similarly, as discussed in lecture, you should handle transi-
tions that were unobserved in the training data in a graceful manner.

=⇒ Write the function compute_text_likelihood.m.

5 Finding the author with the maximum likelihood

Now that you can compute likelihoods, the next step is to write a routine that takes
a set of transition matrices and dictionaries (represented as cell arrays), and a se-
quence of text (again, represented as a cell array), and returns the index of the tran-
sition matrix that results in the highest likelihood. You will write this in a function
classify text, which takes a cell array tmatrices, a cell array dictionaries, a cell
array histograms, and the name of the file containing the test text, and returns a sin-
gle integer best index. This will allow you to test your code using our routines—we
will be using this to test your code on new authors.

=⇒ Write the function classify text.

3



6 Testing your authorship prediction

Now that you can calculate the likelihood that a text is written by an author, take
a look at the texts we have provided you. In the folder TrainingData, you will find
literature by several authors, taken from Project Gutenberg. In the folder TestData,
you will find five unknown excerpts from each of the authors. Create a test function
which creates author models using the training data, and predicts the authors of the
test data. Note that in addition to particular works, in each author’s directory there
is a file all.txt that contains all of the words in a single file.

=⇒ Write a series of tests that adequately demonstrates the operation of your code.
Also document any tests you have done, and the results you got. This series of tests
should also include a function for summarizing the training data, which prints, for
each author, the number of unique words used by that author, the most common
words used by that author, and the most common words that follow a few common
words, such as “the” and “and”. Note any interesting statistics you find.

7 Challenges

Once you have finished this, you may be interested in a harder challenge. Shortly af-
ter the founding of the United States, various founding fathers collectively published
a series of 85 essays called the Federalist Papers under the pseudonym “Publius.”
It is generally accepted that the papers were written by Alexander Hamilton, John
Jay, and James Madison. While historians have agreed on who wrote most essays,
there are a few whose authorship is known only via statistical analysis, and we would
like to corroborate this analysis with evidence from your own analysis. In the folder
TrainingData, you will find sample writing from Hamilton, Jay, and Madison. In the
folder TestData, you will find the first 20 Federalist Papers. Can you identify the au-
thors of each? It may be possible that two people collaborated on a paper. Can you
tell? You will get one extra credit point for writing code that tests on this data set.1

There are many possible ways to improve on the method described above. You will get
an additional extra credit point for implementing an improved method for predicting
authorship. This is completely open-ended—you are free to brainstorm your own
method, but you must explain what you did to get the extra credit.

Finally, you will be turning in your code for this assignment, and we will be testing
your code on a completely different data set (which you won’t have access too). The
code that performs the best in our authorship tests will be awarded at least two extra
credit points (note that you will likely need to write an improved algorithm to get
better results than the baseline method described in Sections 1-6).

One additional item of extra credit is to write a function that takes your computed
statistical models, and generates more text from a given author. The more plausible
the text you can generate, the more extra credit you will receive.

1See http://en.wikipedia.org/wiki/Federalist_papers#Disputed_essays for more information.

4


