. out: Friday, March 30, 2012.
CS1114 ASSIgn ment 5 Part 1 .. Fridgy, April 6, 2012, OPM.

This assignment covers two topics: upscaling pixel art and steganography. This doc-
ument is organized into those two sections.

1 Upscaling pixel art

Artwork from video games in the 80s and 90s was often painstakingly drawn pixel
by pixel. Every pixel in a sprite counted: important details such as an eye or an
ear consisted of only a handful of pixels. When we play these classic games on our
modern systems (for example, via ZSNES on a computer), it is quite natural for us to
want to play at a higher resolution than the meager 512 x 478 (or less) that they were
originally designed for. To do this, we need some way to make the original images
bigger. In this assignment, you will implement and compare multiple algorithms for
scaling up pixel art.

1.1 Nearest neighbor

The simplest algorithm for scaling up images is known as nearest neighbor. For each
pixel in the target larger image, we inversely map it to a location in the original
image. We identify the closest real pixel as the nearest neighbor and set the pixel in
the target image to be the same.

— Implement NN_upscale(img, scale_factor) in NN_upscale.m.

1.2 Linear interpolation

Recall from lecture that interpolation involves figuring out a value at a point where
you don’t have data, but inside the range where you do. Let’s start by considering
linear interpolation in one dimension.

Your first task is to write a function called lerp, which takes in a 1D vector (repre-
senting samples of a function) and an x value, and outputs the estimated function
value at = using linear interpolation. Linear interpolation has three main steps: find-
ing the two neighboring data points, computing the weights for the two points, then
use the formula below for doing linear interpolation.

Unew = Vleft * (xm'ght - ZE) + Uright * (I - xleft)

— Implement the lerp function in lerp.m.



pif @@

y

s ¢

Figure 1: Bilinear interpolation.

Next, let’s consider a 2D matrix of values at integer grid locations (e.g., a grayscale
image). To interpolate values on a 2D grid, we can use the 2D analogue of linear
interpolation: bilinear interpolation. In this case, there are four neighbors for each
possible point we’d like to interpolate, and the intensity values of these four neighbors
are all combined to compute the interpolated intensity, as shown in Figure[1.2] In the
figure, the (Q values represent intensities. To combine these intensities, we perform
linear interpolation in multiple directions: we first interpolate in the x direction (to
get the value at the blue points), then in the y direction (to get the value at the green
points). We can implement this by calling lerp three times.

— Implement bilinear interpolation in bilerp.m. This function takes in a 2D ma-
trix (an image, really), and an x,y value to compute the intensity at. You should
return the computed intensity. This function must call your lerp function.

— Implement BL_upscale(img, scale_factor) in BL_upscale.m.

1.3 Cubic interpolation
We can obtain better interpolation results if we use a higher degree polynomial to

interpolate values. If we use a function of degree 3, then we are using cubic inter-
polation. The general form of a degree 3 polynomial is f(z) = ax® + bax® + cx + d

2



with a derivative of the form f'(z) = 3az? + 2bxz + ¢. To obtain a formula for cu-
bic interpolation, suppose we are interpolating in the region [0,1]. Then we have
f0)=d,f(1)=a+b+c+d, f'(0) =c, f/(1) = 3a+ 2b+ c. We can solve this system of
equations for a, b, ¢, d in terms of f(0), f(1), f'(0), f'(1). f(0) and f(1) are simply the ac-
tual values at the endpoints. We can approximate f’(0) using the slope of the line be-
tween x = —1 and z = 1, (similarly we can approximate f’(1) using the slope between
x = 0 and =z = 2), resulting in a polynomial approximation known as a Catmull-Rom
spline.

= Implement 1D cubic interpolation in cerp.m. When interpolating in the first or
last interval of your input, make a reasonable decision on what to do for the missing
left-most and right-most data points and note it in a comment.

— Implement bicubic interpolation in bicerp.m. This function takes in a 2D matrix
(an image, really), and an z,y value to compute the intensity at. You should return
the computed intensity. This function must call your cerp function.

— Implement BC_upscale(img, scale_factor) in BC_upscale.m.

1.4 Scale2x/ AdvMAME2x

Suppose we wanted to scale up an image by a factor of two. For every source pixel,
there will be four destination pixels. First, we assign the four destination pixels to
be the same value as the source pixel. Then, if the pixel to the left of the source
and the pixel above the source are the same value X, and if neither the pixel below
the source nor the pixel to the right of the source are this value X, then the top left
destination pixel becomes this value X. We compute the other three destination pixels
in a symmetric fashion.

— Implement SC2_upscale.m.

1.5 Scale3x’/ AdvMAMES3x

This is similar to the previous filter, though we generate nine destination pixels for
each source pixels, as we are scaling up an image by a factor of three. Again, we start
by assigning the nine destination pixels to be the same color as the source pixel. We
then assign the four corner pixels of the output using the exact same method as in
the previous scaling algorithm. The four edge pixels are a bit more complicated. We
use the top edge pixel as an example, and the other four cases are symmetric. We set
the top edge pixel to be the same color as the pixel above the source if either of the
following conditions is satisfied:

e The condition for setting the top left pixel of the output was satisfied, and the
source pixel is not the same color as the pixel to its upper-right



e The condition for setting the top right pixel of the output was satisfied, and the
source pixel is not the same color as the pixel to its upper-left

— Implement SC3_upscale.m.

1.6 Eagle

Eagle is another filter which scales up the image by a factor of two, resulting in four
destination pixels. We start by assigning the four destination pixels to be the same
color as the source pixel. If the top, left, and top-left pixels (relative to the source
pixel) are the same color, then we set the top-left destination pixel to be this color.
The other three pixels are done in a symmetric fashion.

—> Implement EAG_ upscale.m.

1.7 Comparison of algorithms

We have included sample sprites in a zip file for you to test your scaling algorithms on.
Feel free to use sprites of your favorite characters and see how well your algorithms
do on them.

— Implement compare upscale2.m, which will accept as input a single RGB image
(a 3-dimensional matrix), and then display titled figures on the screen: the original,
and an image twice the size of the original produced by the applicable previously
mentioned algorithms

—— Implement compare upscale3.m, which will accept as input a single RGB image
(a 3-dimensional matrix), and then display titled figures on the screen: the original,
and an image triple the size of the original produced by the applicable previously
mentioned algorithms

2 Steganography

If you have a message to transmit that you want to ensure only the intended recipient
can read, you would be correct in wanting cryptography to make sure that any prying
eyes can’t decipher the message. However, what if you have a message to transmit
that you don’t want anyone to know you sent? This is where steganography, the
process of writing hidden messages such that no one even suspects its existence except
the sender and recipient, comes in. In this assignment, you will implement functions
for hiding and deciphering text in RGB images. Your implementations should be
compatible with other students’ implementations - a good way to test your code would
be to send each other hidden text. NOTE: In this part of the assignment, we will be



using images in the uint8 format, so make sure you are using im2uint8 for converting
your images.

As a prerequisite for hiding and deciphering text, we need a numerical representa-
tion of the alphabet that we can embed into the image. We will use 0 through 25 to
represent a-z, 26 to represent a space, 27 to represent a period, and 28 to represent
the end of the message. You should note that these are not the corresponding integer
values for the alphabet in MATLAB strings.

To hide a text of length n, it might be tempting to choose a color channel in the image
and overwrite the first n pixel values with our alphabet and be done with it. However,
this will likely result in significant irregularities in the output image and raise the
suspicions of anyone looking at the image. To be a bit more clever about this, we
will convert our alphabet to binary numbers and replace only the least significant bit
(LSB) of each pixel value: this requires 5 pixels for every character in our text, will
alter each pixel value by at most 1. For example, if a pixel in an image has the value
5, which is 101 in binary, and we need to embed a 0, it becomes 100 in binary, which is
4,

— Implement hide msg.m, which accepts as input an RGB image, an integer indi-
cating which channel to hide the message in, and a string, and outputs an image with
the string hidden in the appropriate channel.

—— Implement decipher msg.m, which accepts as input an RBG image and an inte-
ger indicating a channel, and outputs any text hidden in the specified channel.

For information about string manipulation in MATLAB, you should consult this link.


http://www.mathworks.com/help/techdoc/ref/strings.html

	Upscaling pixel art
	Nearest neighbor
	Linear interpolation
	Cubic interpolation
	Scale2x/AdvMAME2x
	Scale3x/AdvMAME3x
	Eagle
	Comparison of algorithms

	Steganography

